• Title/Summary/Keyword: diode retifier

Search Result 2, Processing Time 0.015 seconds

Drawing Sinusoidal Input Currents of Series-Connected Diode Rectifiers by A Current Injection Technique (직렬접속형 다이오드 정류기 시스템의 전류주입에 의한 고조파 저감)

  • O, Jun-Yong;Choe, Se-Wan;Kim, Yeong-Seok;Won, Chung-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.640-645
    • /
    • 1999
  • This paper proposes a new series-connected diode rectifier which draws sinusoidal input currents. The proposed rectifier system is configured by adding an auxiliary circuit to the conventional 12-pulse series-connected diode rectifier and employing a current injection technique. A low kVA($0.02P_{\circ}$(PU) ) active current source injects a triangular current into the interphase reactor of the diode rectifier. The current injection results in near sinusoidal input current from the utility with less than 1% THD. The resulting system is suitable for high voltage and high power applications. Experimental and simulation results are provided from a 220V, 3kVA prototype rectifier system.

  • PDF

(Power Loss Characteristics in MOSFET Synchronous Retifier with Schottky Barrier Diode) (SBD를 갖는 MOSFET 동기정류기 손실특성)

  • Yoon, Suk-Ho;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2568-2571
    • /
    • 1999
  • Recently, new trend in telecommunication device is to apply low voltage, about 3.3V-1.5V. However, it is undesirable in view of high efficiency and power desity which is the most important requirement in the distributed power system. Rectification loss in the output stage in on-board converter for distributed power system are constrained to obtain high efficience at low output voltage power suppies. This paper is investigated conduction power loss in synchronouss rectifier with a parallel -connected Schottky Barrier Diode(SBD). Conduction losses are calculated for both MOSFET and SBD respectively. The SBD conduction power loss dissipates more than the MOSFET rectifier conduction power loss.

  • PDF