• Title/Summary/Keyword: diode lasers

Search Result 113, Processing Time 0.023 seconds

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

On the Validity of the Effective Cavity Model with the Transfer Matrix Method as a Frame of Reference In VCSELs (수직 공진기 반도체 레이저에서 전달 행렬 방법과의 비교를 통한 유효 공진기 모델의 타당성 검토)

  • 김태용;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.31-36
    • /
    • 2004
  • In comparison with in-plane lasers, predicting the output power and differential quantum efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the distributed Bragg reflector(DBR) layers. Therefore, effective cavity model and transfer matrix method have been adapted in order to calculate the output power and differential quantum efficiency The effective cavity model is inappropriate to calculate output power and differential quantum efficiency while it is practically adequate to calculate the threshold gain and threshold current density The reason is that the effective cavity model can not take account of the absorption in GaAs stack layer right below the metal aperture. In this paper, we have compared the threshold current and differential quantum efficiency calculated by using transfer matrix method with effective cavity model and we have made a study of the validity of the effective cavity model. Finally, we have confirmed the versatility of the transfer matrix method with these studies.

High-power Operation of a Yb Fiber Laser at 1018 nm (1018 nm 파장의 고출력 Yb 광섬유 레이저)

  • Oh, Ye Jin;Park, Hye Mi;Park, Jong Seon;Park, Eun Ji;Kim, Jin Phil;Jeong, Hoon;Kim, Ji Won;Kim, Tae Hyoung;Jeong, Seong Mook;Kim, Ki Hyuck;Yang, Hwan Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • High-power continuous-wave operation of a Yb-doped double-clad fiber laser at 1018 nm, pumped by high-power diode lasers at 976 nm, is reported. Based on numerical calculation of the gain and laser signal power along the length of the Yb fiber, it is found that robust operation at 1018 nm can be achieved for a high Yb3+-ion excitation density greater than 11.5%, accompanied by high suppression of the feedback from the fiber's end facet. The Yb fiber laser constructed in house yields 626 W of continuous-wave output at 1018 nm for 729 W of incident pump power, corresponding to a slope efficiency of 86.6%. The prospect for power scaling is considered.

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.

Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser (고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화)

  • Kim, Jong-Do;Kil, Byung-Lea;Kang, Woon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

Comparison of two techniques for transpharyngeal endoscopic auditory tube diverticulotomy in the horse

  • Koch, Drew W.;Easley, Jeremiah T.;Nelson, Brad B.;Delcambre, Jeremy J.;McCready, Erin G.;Hackett, Eileen S.
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.835-839
    • /
    • 2018
  • Auditory tube diverticula, also known as guttural pouches, are naturally occurring dilations of the auditory tube in horses that communicate with the nasopharynx through a small ostium. Infection and select other conditions can result in inflammation and narrowing of the nasopharyngeal ostium, which prevents drainage of fluid or egress of air and can lead to persistent infection or guttural pouch tympany. Auditory tube diverticulotomy allows continuous egress from the auditory tube diverticula and is a feature of disease treatment in horses, in which medical treatment alone is not successful. Transpharyngeal endoscopic auditory tube diverticulotomy was performed using a diode laser either at a single dorsal pharyngeal recess location or bilaterally caudal to the nasopharyngeal ostium in 10 horse head specimens. Both methods resulted in clear communication between the nasopharynx and auditory tube diverticula. Diverticulotomy performed in the dorsal pharyngeal recess required less laser energy and activation time and had a shorter surgical duration than diverticulotomy performed caudal to the nasopharyngeal ostium. Further study related to the clinical application of both techniques is warranted.

A Study on the Real-Time Temperature and Concentration Measurement of Combustion Pipe Flow Field (연소 배관 유동장의 실시간 온도, 농도 측정에 관한 연구)

  • Hong, Jeong Woong;Yoon, Sung Hwan;Jeon, Min Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • Pipe failure due to thermal fatigue and environmental regulations are increasing the importance of pipe monitoring systems in industrial plants. Since most pipe monitoring systems are focus on external crack inspected, it is necessary to temperature and concentration measuring monitoring system inside the pipe. These systems have spatial uncertainty due to sample inspection by one-point measurement. In addition, real-time measurement is not possible due to the limitation of time delay due to contact measurement. In this study, CT-TDLAS (Computed tomography-Tunable diode laser absorption spectroscopy) apply to overcome the limitations of existing methods. Lasers exhibiting an absorption response at a wavelength of 1395 nm were arranged in a lattice pattern on measuring cell. It showed that the inside of the pipe changed to an unstable combustion state over time.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

Effects of Various Laser Wavelengths and Power Densities on the Ocular Damage in Pigmented Rats

  • Chung, Phil-Sang;Shin, Jang-In;Chang, Moo-Hwan;Chang, So-Young;Kang, Jung-Wook;Hwang, Hee-Jun;Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • With the widespread use of laser in medical and industrial settings, the incidence of laser injury to the ocular continues to grow among workers involved in handling lasers. The aim of this study is to compare ocular damages after irradiation with various laser wavelengths and power density. Ocular of pigmented rats was irradiated with $CO_2$ laser, 1064 nm Nd:YAG laser, and 532 nm diode laser. We observed damage of cornea, lens, and retina using slit lamp microscope and funduscopy. H&E staining of histopathology were applied to study the specimens. The higher exposure ($200mW/cm^2$, 10 sec) with $CO_2$ laser resulted in severe damage at the cornea. For the 1064 nm Nd:YAG laser, the higher exposure than $10mW/cm^2$ (10 sec) resulted in damage at the cornea and lens. Further, with the 532 nm diode laser, retinal lesions were induced when $10mW/cm^2$ (0.25 sec) was delivered to the eye. Theses results suggest that the ocular damages are different from various laser wavelength and power density.

  • PDF

Histologic Evaluation of Blood Vessels Sealed with 1,470-nm Diode Laser: Determination of Adequate Condition for Laser Vessel Sealing

  • Im, Nu-Ri;Moon, Jungho;Choi, Wonshik;Kim, Byoungjae;Lee, Jung Joo;Kim, Heejin;Baek, Seung-Kuk
    • Medical Lasers
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Introduction Energy-based devices allow for a more rapid and efficient ligation of blood vessels during operations. In the present study, we evaluated the feasibility of a laser as an alternative energy source for the vessel sealing system and determined the optimal condition of laser for an effective vessel sealing through histologic examination. Materials and Methods The arteries (5 mm diameter) harvested from porcine legs were compressed between two glass-slides to eliminate its luminal space and were irradiated with 1,470-nm diode laser under various sealing conditions, including laser power (5-30 W), irradiation time (5 or 10 seconds), and focus mode (focus or defocus). Subsequently, the irradiated vessels were fixed in 4% formaldehyde and then processed to paraffin block. The paraffinized sample was sectioned and stained with hematoxylin and eosin for histological evaluation. Results The extent of tissue change was positively correlated with duration and power of laser. In defocus mode, the irradiated vessels showed sufficient tissue denaturation for sealing effect without severe tissue destruction. Moreover, among the various conditions of irradiation, laser power between 15 and 20 W, as well as exposure time of 5 seconds were appropriate for sealing the blood vessels. Conclusion Adequate power and irradiation duration of laser can render blood vessels to be sealed effectively, although the higher power of laser may be required to cut the vessels.