• Title/Summary/Keyword: dimensionless velocity

Search Result 235, Processing Time 0.022 seconds

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

The Reduced Model Test for the Determination of Ventilation Velocity to Prevent Backflow in Uni-directional Road Tunnel during a Fire Disaster (일방향 도로터널내 화재 발생시 역류를 막는 환기속도결정에 관한 축소모형실험)

  • 유영일;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • In the case of a fire disaster in a uni-directional road tunnel, it is important to determine the critical ventilation velocity to prevent the backflow travelling toward the tunnel exit where vehicles are stopped. The critical ventilation velocity is horizontal velocity to prevent hot smoke from moving toward the tunnel exit. According to Froude modelling, the model tunnel whcih was 300mm in diameter and 21 m in length was made of acryl tubes. Inner section of acryl tubes was clothed with polycarbonate. 1/20 scaled model vehicles were installed to simulate the situation that vehicles are stopped in the tunnel exit. Methanol in a pool type burner was burned in the middle of tunnel to simulate a fire hazard. In this study, the basis of determining the critical ventilation velocity is the ventilation flow rate that is able to maintain the allowable CO concentration in the tunnel section. We assumed that the allowable CO concentration was backflow dispersion index. Futhermore, We intended to find out CO distribution and temperature distribution according as we changed ventilation velocity. The results of this study were that no backflow happened when ventilation velocity was 0.52 m/s in the case of 5.75 kW. If we adapt these results of a fire disaster releasing 10MW heat capacity in real tunnel which is 400m in length, no backflow happens when ventilation velocity is 2.31m/s. After we figured out dimensionless heat release rate and dimensionless ventilation velocity of model test and those of real test to verify experimental correctness, we tried to find out correlation between experimental results of model tunnel and those of real tunnel.

  • PDF

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

Hydraulic Characteristics of Train Carriage Artificial Reef in Wave and Current Field Conditions (파랑.흐름 공존장에서의 철도차량 인공어초의 수리학적 특성)

  • Sohn, Byung-Kyu;Yi, Byung-Ho;Yoon, Han-Sam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.108-117
    • /
    • 2011
  • Old train carriages have been used to create artificial reefs (AR) as part of programs to enhance ocean fisheries and recreational resources. This study conducted hydraulic modeling experiments to estimate the structural stability of a train carriage AR. By applying fixed- and movable-bed conditions and Froude similitude, theoretical and hydraulic experiments revealed major design forces(e.g., water waves and currents). The results of this study showed that some dimensionless design parameters (e.g., surf similarity parameters, water particle velocity, scouring, and deposition) also affect the stability of an AR under various wave and current field conditions. In the fixed-bed condition, movement of the AR occurred when dimensionless water particle velocity based on the surf similarity parameter was larger than about 0.32. In the moveable-bed condition, the settlement depth (field values) of the AR ranged from 6 to 30 cm. The results indicated that characteristics of the sediment/bed condition and the direction of external forces acting on an AR should be considered when selecting AR sites.

Axial Velocity Profiles and Secondary Flows of Developing Laminar Flows in a Straight Connected Exit Region of a 180° Square Curved Duct (180° 곡관덕트의 출구영역에 연결된 직관덕트에서 층류유동의 속도분포와 2차유동)

  • Sohn Hyun-Chull;Lee Heang-Nam;Park Gil-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1092-1100
    • /
    • 2005
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{o}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 3m. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D$_{h}$=50.

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • Kim, Hyeong Jae;Jeong, Hae Do;Lee, Eung Suk;Sin, Yeong Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.39-39
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • 김형재;정해도;이응숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-38
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

An Extended Numerical Calibration Method for an Electrochemical Probe in Thin Wavy Flow with Large Amplitude Waves

  • Park, Ki-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.553-558
    • /
    • 1998
  • The calibrating method for an electrochemical Probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution wave-induced normal velocity can be classified on the dimensionless parameter V. If V above a critical value of V, $V_{crit}$, the effects of the wave-induced normal velocity become larger with an increase in V. IF V its effects negligible for V < $V_{crit}$. The unknown shear rate is numerically determined by solving the 2-D mass transport equation inversely. The president inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method.

  • PDF

Effects of Hydraulic Variables on the Formation of Freshwater-Saltwater Transition Zones in Aquifers

  • Park, Nam-sik
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.1-8
    • /
    • 1996
  • The location and the shape of a freshwater transition zone in a coastal aquifer are affected by many hydraulic variables. To data most works to determine the effects of these variables are limited to qualitative comparison of transiton zones. In this work characteristics of transition zones are analyzed quantitatively. The investigation is limited to a steady-state transition zones. Three dimensionless variables are defined to represent characteristics of steady-state transition zones. They are maximum introsion length, thickness, and degree of stratification. Effects of principal hydraulic variables (velocity and dispersivity) on these characteristics are studied using a numerical model. Dimensional analysis is used to systematically analyze entire model results. Effects of velocity and dispersivity are seem clearly. From this study, increase in velocity is found to cause shrinkage of transition zones. This observation contradicts claims by some that, because dispersion is proportional to velocity, increase in velocity would cause expansion of transition zones.

  • PDF

The Effect of Nozzle Height on Heat Transfer of a Hot Steel Plate Cooled by an Impinging Water Jet (충돌수분류에 냉각되는 고온 강판의 열전달에 있어 노즐높이의 영향에 대한 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.668-676
    • /
    • 2003
  • The effect of nozzle height on heat transfer of a hot steel plate cooled by an impinging liquid jet is not well understood. Previous studies have been based on the dimensionless parameter z/d. To test the validity of this dimensionless parameter and to investigate gravitational effects on the jet, stagnation velocity of an impinging liquid jet were measured and the cooling experiments of a hot steel plate were conducted for z/d from 6.7 to 75, and an inverse heat conduction method is applied for the quantitative comparison. Also, the critical instability point of a liquid jet was examined over a range of flow rates. The experimental velocity data for the liquid jet were well correlated with the dimensionless number 1/F $r_{z}$$^2$based on distance. It was thought that the z/d parameter was not valid for heat transfer to an impinging liquid jet under gravitational forces. In the cooling experiments, heat transfer was independent of z when 1/F $r_{z}$$^2$< 0.187(z/d = 6.7). However, it was found that the heat transfer quantity for 1/F $r_{z}$$^2$=0.523(z/d = 70) is larger 11% than that in the region for 1/F $r_{z}$$^2$=0.187. The discrepancy between these results and previous research is likely due to the instability of liquid jet.uid jet.