• Title/Summary/Keyword: dimensional stabilization

Search Result 118, Processing Time 0.021 seconds

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Arthroscopic Stabilization for Displaced Lateral Clavicular Fractures: Can It Restore Anatomy?

  • Khan, Prince Shanavas;Yoo, Yon-Sik;Kim, Byung-Su;Lee, Seong-Jin;Ha, Jong Mun
    • Clinics in Shoulder and Elbow
    • /
    • v.19 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • Background: The purpose of our study was to evaluate the accuracy of reduction based on postoperative computed tomography (CT) images after arthroscopic stabilization using tightrope system for unstable distal clavicle fracture. Methods: Twelve patients with distal clavicle fracture combined with coracoclavicular (CC) ligament injury (type II, V) who received arthroscopically assisted fixation using a flip button device were evaluated for accuracy of reduction using 3-dimensional postoperative CT scan by measuring the degree of distal clavicular angulation and clavicular shortening. Results: Immediate postoperative plain radiograph confirmed restoration of the CC distance (CCD) in 10 patients. At final follow-up, the CCD remained reduced anatomically on plain radiographs in these patients. All patients showed excessive posterior angulation and shortening compared to the opposite side. The average Constant score recovered to 94.8 at final follow-up. Conclusions: Indirect reduction and arthroscopic subacromial approach with flip button fixation of unstable distal clavicle fractures demonstrated favorable clinical results despite unavoidable posterior angulation of distal clavicle and shortening the total length of clavicle.

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

Full-mouth rehabilitation of a patient with severe tooth wear using a gothic arch tracer and stabilization splint. (비기능적 습관에 의한 전반적인 마모 환자의 고딕아치 기록장치 및 교합안정장치를 통한 완전 구강 회복 증례)

  • Sungwoo Ju
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • A patient with para-functional habits can cause widespread teeth wear, along with temporomandibular joint disorders and myofascial pain syndrome in the masticatory muscles. Prolonged teeth wear is associated with a decrease in vertical occlusal dimension, leading to issues such as changes in facial morphology, decreased masticatory efficiency, and temporomandibular joint disorders. To achieve a three-dimensional full-mouth rehabilitation in patients with decreased vertical occlusal dimension, accurate diagnosis, analysis, and proactive treatment planning are essential. Prosthetic treatment accompanied by the restoration of physiological vertical occlusal dimension and the re-establishment of a normal occlusal plane is necessary. This case report presents a full-mouth rehabilitation case involving a patient with overall teeth wear, showing decreased vertical occlusal dimension which results in discomfort in the temporomandibular joint and aesthetic dissatisfaction. The report highlights the successful outcome achieved through the use of occlusal stabilization splint for temporomandibular joint stability and Gothic arch tracing devices for the re-establishment of intermaxillary relationships. Also, through adjustments and adaptation assessment using provisional prostheses, favorable outcomes were achieved both functionally and aesthetically.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

Monitoring of Moisture and Dimensional Behaviors of Nail-Laminated Timber (NLT)-Concrete Slab Exposed to Outdoor Air

  • HWANG, Sung-Wook;CHUNG, Hyunwoo;LEE, Taekyeong;AHN, Kyung-Sun;PANG, Sung-Jun;BANG, Junsik;Won, Hyo;OH, Jung-Kwon;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.301-314
    • /
    • 2022
  • The moisture and dimensional behaviors of a nail-laminated timber (NLT)-concrete slab composed of an NLT-plywood composite and topping concrete are monitored for 385 days. The slab is developed for using as flexural elements such as floors. The humidity control of wood gently introduces significant fluctuations under the ambient relative humidity into the slab, and fluctuations in the relative humidity result in dimensional changes. The equilibrium moisture content of the slab increases from 6.7% to 15.3% during the monitoring period, resulting in a width (radial) strain of 0.58%. The length (longitudinal) strain is negligible, and the height (tangential) strain is excluded from the analysis because of abstruse signal patterns generated. Concrete pouring causes a permanent increase in the width of the NLT-plywood composite. However, the width deforms because the weight of the concrete mixture loosens the nail-laminated structure, not because of the significant amount of moisture in the mixture. The dimensional stabilization effect of the nail-laminated system is demonstrated as the composite strain is lower than the total strain of lumber and plywood, which are elements constituting the nail-laminated structure.

Numerical Simulation of the Experimental Investigation of the Two Dimensional Ram Accelerator Combustion Flow Field (이차원 램 가속기 연소 유동장의 실험적 연구의 수치 모사)

  • 최정열;정인석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.8-23
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the comparison with the experiments performed to investigate the ram accelerator flow field by using an expansion tube facility in Stanford University. Wavier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state numerical simulation shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$$O_2$$17N_2$ fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$$O_2$$12N_2$ mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. From the result of unsteady numerical simulation, the experimental result seems to be an instantaneous state during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

TWO-DIMENSIONAL PHOTOELASTIC ANALYSIS ON VARIOUS TYPES OF COPING DESIGNS UNDER OVERDENTURE (Overdenture의 지대치 Coping형태에 따른 광탄성 응력 분석)

  • Yang, Hye-Ryung;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.103-115
    • /
    • 1991
  • This study was executed to analyze the stress distribution of tooth, supporting structure and overdenture by two-dimensional photoelastics when 6 types of coping were inserted. Types of coping were designed to be inclined plane, short dome, medium dome, shore square, medium square and o-p anchor attachment. Fortes were applied respectively as follows: 1) Vertical load of 10 kg on the incisal edge 2) $30^{\circ}$ diagonal load of 8 kg on the labial surface. The results were as follows: 1. In case of short dome and o-p anchor attachment, the stress is evenly distributed on teeth, supporting tissue structure under vertical and $30^{\circ}$ diagonal load, then short dome and o-p anchor attachment show better stress distribution and stabilization of overdenture than any other coping under labial diagonal load. 2. Inclined plane revealed greater tendency of displacement of overdenture than any other coping under labial diagonal load. 3. Long height of copings had greater concentration of stress than short height of copings. 4. In case of medium dome under labial diagonal load, there were high level of stress concentration on denture base contacted labioincisal angle of coping.

  • PDF

Simplified analysis of creep for preloaded reconstituted soft alluvial soil from Famagusta Bay

  • Garoushi, Ali Hossien Basheer;Uygar, Eris
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-169
    • /
    • 2022
  • Preloading of soft clays is a common ground stabilization method for improvement of compressibility and the undrained shear strength. The waiting period under preload is a primary design criterion controlling the degree of improvement obtained. Upon unloading the overconsolidation attained with respect to actual loads defines the long term performance. This paper presents a laboratory study for investigation of creep behavior of Famagusta Bay alluvial soft soil preloaded under various effective stresses for analysis of long term performance based on the degree of overconsolidation. Traditional one-dimensional consolidation tests as well as modified creep tests are performed on reconstituted soft specimens. Compressibility parameters are precisely backcalculated using one dimensional consolidation theory and the coefficient of creep is determined using the traditional Cassagrande method as well as two modified methods based on log cycles of time and the inflection of the creep curve. The test results indicated that the long term creep can be successfully predicted considering the proposed method. The creep coefficients derived as part of this method can also be related to the recompression index (recompression index, swelling index) considering the results of the testing method adopted in this study.

An Incompressible Flow Computation using a Hierarchical Iterative Method (계층적 반복법을 이용한 비압축성 유동계산)

  • Kim Jin Whan;Jeong Chang Ryul
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.216-221
    • /
    • 2004
  • In two dimensional incompressible flaws, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint and hence achieve an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flaw analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flaw showed the present procedure to be stable, very efficient and useful in flaw analyses in conjunction with hierarchical elements.

  • PDF