• Title/Summary/Keyword: dimension spectra

Search Result 37, Processing Time 0.026 seconds

Performance Improvement of Automatic Basal Cell Carcinoma Detection Using Half Hanning Window (Half Hanning 윈도우 전처리를 통한 기저 세포암 자동 검출 성능 개선)

  • Park, Aa-Ron;Baek, Seong-Joong;Min, So-Hee;You, Hong-Yoen;Kim, Jin-Young;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.105-112
    • /
    • 2006
  • In this study, we propose a simple preprocessing method for classification of basal cell carcinoma (BCC), which is one of the most common skin cancer. The preprocessing step consists of data clipping with a half Hanning window and dimension reduction with principal components analysis (PCA). The application of the half Hanning window deemphasizes the peak near $1650cm^{-1}$ and improves classification performance by lowering the false negative ratio. Classification results with various classifiers are presented to show the effectiveness of the proposed method. The classifiers include maximum a posteriori probability (MAP), k-nearest neighbor (KNN), probabilistic neural network (PNN), multilayer perceptron(MLP), support vector machine (SVM) and minimum squared error (MSE) classification. Classification results with KNN involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic BCC detection.

  • PDF

Influence of Co incorporation on morphological, structural, and optical properties of ZnO nanorods synthesized by chemical bath deposition

  • Iwan Sugihartono;Novan Purwanto;Desy Mekarsari;Isnaeni;Markus Diantoro;Riser Fahdiran;Yoga Divayana;Anggara Budi Susila
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • We have studied the structural and optical properties of the non-doped and Co 0.08 at.%, Co 0.02 at.%, and Co 0.11 at.% doped ZnO nanorods (NRs) synthesized using the simple low-temperature chemical bath deposition (CBD) method at 95℃ for 2 hours. The scanning electron microscope (SEM) images confirmed the morphology of the ZnO NRs are affected by Co incorporation. As observed, the Co 0.08 at.% doped ZnO NRs have a larger dimension with an average diameter of 153.4 nm. According to the International Centre for Diffraction Data (ICDD) number #00-036-1451, the x-ray diffraction (XRD) pattern of non-doped and Co-doped ZnO NRs with the preferred orientation of ZnO NRs in the (002) plane possess polycrystalline hexagonal wurtzite structure with the space group P63mc. Optical absorbance indicates the Co 0.08 at.% doped ZnO NRs have stronger and blueshift bandgap energy (3.104 ev). The room temperature photoluminescence (PL) spectra of ZnO NRs exhibited excitonicrelates ultraviolet (UV) and defect-related green band (GB) emissions. By calculating the UV/GB intensity, the Co 0.08 at.% is the proper atomic percentage to have fewer intrinsic defects. We predict that Co-doped ZnO NRs induce a blueshift of near band edge (NBE) emission due to the Burstein-Moss effect. Meanwhile, the redshift of NBE emission is attributed to the modification of the lattice dimensions and exchange energy.

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

Study of the Nondestructive Test Method for the Embrittlement Evaluation of Nuclear Reactor Vessel Material by $M{\ddot{o}}ssbauer$ Spectroscopy ($M{\ddot{o}}ssbauer$ 분광법에 의한 원자로 용기재료의 비파괴적 중성자 조사평가에 대한 연구)

  • Jung, M.M.;Jang, K.S.;Yoo, K.B.;Kim, G.M.;Yoon, I.S;Hong, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.183-190
    • /
    • 2000
  • The purpose of this study is to evaluate the magnetic property change of the nuclear reactor vessel steel irradiated by fast neutrons using $M{\ddot{o}}ssbauer$ spectroscopy, and the effects of the defects produced by neutron irradiation on the changes using X-ray diffraction. The specimens, fabricated with the dimension of $23mm{\times}18mm{\times}70{\mu}m$, were irradiated by neutron fluence from $10^{12}n/cm^2\;to\;10^{18}n/cm^2$ at 343K. Throughout the experiments, it is understood that (1) the X-ray diffraction measurement shows that the change of crystal nature is started at the irradiation of $10^{16}n/cm^2$ and a crystal structure has been severely damaged at the irradiation over $10^{17}n/cm^2$, (2) the analysis of the $M{\ddot{o}}ssbauer$ spectra has shown that magnetic transition phenomena occur at the irradiation over $10^{17}n/cm^2$ and (3) both methods can be utilized as nondestructive test methods for the embrittlement evaluation of materials irradiated by fast neutrons.

  • PDF

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing (유기산, 산화음이온 및 금속 산화물 간의 근권 내 상호작용 연구를 위한 계산화학과 적외선 분광학에 관한 총설: 기본적인 원리와 스펙트럼 처리)

  • Han, Junho;Ro, Hee-Myong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.426-439
    • /
    • 2017
  • This review summarizes advantage and limitation in infrared spectroscopy and computational chemistry to understand rhizospheric interaction among organic acids, oxyanions and metal oxides. Since organic acids and metal oxides determine dynamics of oxyanions in the soil environment, knowledge of fundamental mechanisms is a prerequisite for understanding the interactions at soil-water interface. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) is a powerful tool to measure the interfacial reactions. However, the ATR-FTIR measurements are abstruse, because the optical characteristics for measurements are variable depending on the experimental setup. In addition, spectral overlapping is a primary obstacle to the analysis of the interfacial reaction; thus, it is essential to detect and to deconvolute bands for signal interpretation. In this review, we expained the fundamental principle for spectrum processing, and four band identification methods, such as derivative spectroscopy, two-dimension correlation spectroscopy, multivariate curve resolution, and computational chemistry with example of aqueous phosphate speciation. As a result, spectrum processing and computational chemistry improved interpretation and spectral deconvolution of overlapped spectra in relatively simple systems, but it was still unsatisfactory for the problems in more complexed system like nature. Nevertheless, we believed that our challenge would contribute practically to develop adequate analytical procedure, signal processing and protocols that could help to improve interpretation and to understand the interfacial interactions of oxyanions in natural systems.

A Study of Coloration of Topaz(I): Mineralogical and Chemical Study on the Topaz Selected from Some Localities of the World (토파즈의 人工着色 處理를 위한 硏究(I) : 世界 主要 産地別 토파즈의 鑛物學的 및 化學的 特性)

  • Han, Yi-Kyeong;Park, Maeng-Eon;Jang, Yong-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.109-121
    • /
    • 1992
  • For the purpose of mineralogical and chemical study on the topazes from various localities of world(Brzail, China, India, Nigeria and Sri Lanka), electron microprobe analysis(EPMA), neutron activation analysis(NAA), X-ray diffractometry, Raman spectroscopy, etch test, scanning electron microscopy, refractive index, specific gravity, fluid inclusion were performed. The chemical composition in topaz was discussed along with its physical and structural properties. Variations in the unit-cell dimension and physical properties of topaz were found to have a close relations in the unit-cell dimension and physical properties of topaz were found to have a close relationship with extent of substitution of $OH^-\;for\;F^-$. According to neutron activation analyses, the trace elements had no effects on the physical properties of topaz. Raman spectra showed that the peaks of topaz were different in intensity from one locality to another. Etching defects in topaz includes negative crystal defect o point-bottom pit(India, Nigeria) and net work defect of curl-bottom pit(Brazil, China). Fluid inclusions in topaz may be classiffied into liquid $CO_2$-bearing inclusion, gaseous inclusion, halite, sylvite-bearing inclusion and liquid inclusion. The results of this study can be useful to devising artificial coloring methods for topaz with different mineralogical compositions.

  • PDF