• Title/Summary/Keyword: dilution effect model

Search Result 48, Processing Time 0.023 seconds

Estimation in Group Testing when a Dilution Effect exists

  • Kwon, Se-Hyug
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.787-794
    • /
    • 2006
  • In group testing, the test unit consists of a group of individuals and each group is tested to classify units from a population as infected or non-infected or estimate the infection rate. If the test group is infected, one or more individuals in the group are presumed to be infected. It is assumed in group testing that classification of group as positive or negative is without error. But, the possibility of false negatives as a result of dilution effects happens often in practice, specially in many clinical researches. In this paper, dilution effect models in group testing are discussed and estimation methods of infection rate are proposed when a dilution effect exists.

Development of Integrated Boration and Dilution Model for Boron Concentration Behavior Analysis (붕산농도 거동분석을 위한 종합적 붕산주입 및 희석모델 개발)

  • Chi, Sung-Goo;Park, Han-Kwon;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 1992
  • In this study, an integrated boration and dilution (INBAD) model is proposed to predict the required makeup flowrate for RCS boron concentration change and to analyze the boron concentration behavior at each subsystem within the RCS including CVCS during boration and dilution operation. The INBAD model is constructed by integrating an existing neutronic code and a boration and dilution model. The boration and dilution model has been developed for our specific purpose using the one-cell model and multi-cell model. In addition, in order to assess the boron concentration behavior more realistically, two important features such as variable pressurizer heater output and optional makeup mode (either direct or indirect injection) are implemented in this model. In order to demonstrate the usefulness of this model, the boron concentration behavior analysis at each subsystem were performed for both direct and indirect injection mode using YGN 3 and 4 design data. Also, the effect of pressurizer heater output on the primary loop boron concentration was investigated. The results showed that the boron concentration changes can be predicted accurately at each subsystem during boration and dilution operation.

  • PDF

The Effect of Dilution on Porticle Deposition in The Entry Deposit of The Ferrogroms (Ferrography에서 샘풀희석률이 마모입자 정량분석에 미치는 영향)

  • 권오관
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.38-45
    • /
    • 1985
  • Ferrograms prepared from off samples collected during testing in the transition region were originally diluted at 20:1. To obtain some information about the effect of dilution on the analysis procedures, a series of measurements were made on ferrograms prepared to different dilutions in the range 6 to 30:1 from oil samples collected after testing in the four ball machine at the 51 kg and 55 kg load, respectively, Fig. 1. The variations in area covered, perimeter, intercept and particle count were then plotted as a function of dilution level and appropriate mathematical expressions established such that the results obtained at any dilution level specified within the range can then be corrected back to an equivalent undiluted value. The effect of dilution on the variance of the particle size distribution was also investigated. The main results are tabulated, Tables 1-5 and also plotted as a function of dilution, level Figs. 2-9.

Effect of Water Adulteration on the Rheology and Antibacterial Activities of Honey

  • ANIDIOBU, Vincent Okechukwu
    • The Korean Journal of Food & Health Convergence
    • /
    • v.8 no.5
    • /
    • pp.11-20
    • /
    • 2022
  • Honey was diluted with different percentages of water and was analysed rheologically at room temperature of 27℃. The rheological profiles of pure and impure honey samples were measured at low shear rates (0.01-4.16s-1). This work developed a structural kinetic model, which correlated well with the rheological data. The new model was used to categorise honey samples using their average molecular weights as one of the distinctive properties. Also, the kinetics order in the new model predicts the number of active components in the "honey" undergoing deformation. Honey produced third order kinetics to depict the monomers, oligomers and water content in honey. Pure honey exhibits peculiar non-Newtonian rheological behaviour. The behaviour of water is Newtonian. Dilution of honey with different percentages of water turns the resulting fluid Newtonian from 10% dilution with water. This study analysed the antibacterial activities of honey and serially adulterated samples against Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial analyses of honey were conducted using Kirby Bauer's well diffusion method. The results indicated that pure honey exhibited a zone of inhibition against both organisms. Also, the diameter of the zone of inhibition decreased with increasing dilution of honey, suggesting a correlation with the rheological method.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

The Influence of Interphase Condition on Mechanical Properties of Short-Fiber Reinforced Rubber (계면상 조건이 단섬유 강화고무의 기계적 성질에 미치는 영향)

  • Ryu, Sang-Yeol;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.625-633
    • /
    • 2000
  • The mechanical and curing properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The tensile strength exhibits a dilution effect at a low fiber content in each interphase. It is found that the interphase conditions have an important affect on the dilution ratio and critical fiber content. Double coatings of bonding agent 402 and rubber solution become the best interphase model in this study. The yield strength, tensile modulus, tear strength and fracture toughness at rupture, Jr are significantly improved due to fiber concentration.

Analysis of the Effects of Fuel-side Nitrogen Dilution and Pressure on NOx Formation of Turbulent Syngas Nonpremixed Jet Flame (질소희석과 압력이 석탄가스 난류 확산화염장의 NOx 생성특성에 미치는 영향 해석)

  • Park, Sangwoon;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.63-64
    • /
    • 2012
  • The present study has numerically investigated the effects of the fuel-side nitrogen dilution on the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames. Numerical results indicate that for highly diluted case, the flame structure is dominantly influenced by the turbulence-chemistry interaction and marginally modified by the radiation effect. On the other hand, no-dilution case with the longer flight time and the relatively intermediate scalar dissipation rate is influenced strongly by the radiative cooling as well as moderately by the turbulence-chemistry interaction.

  • PDF

The Relationship between Outcome Expectancy and Adolescents' Illegal Use of Music Sources: Double Mediating Effects of Reward Sensitivity and Social Dilution of Responsibility (청소년의 불법음원사용에 대한 결과기대와 사용행동 간의 관계: 보상민감성과 사회적 책임감 희석의 이중매개효과)

  • Lim, Yoon-Taek
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.285-293
    • /
    • 2021
  • This study aims to identify the relationship between outcome expectancy and illegal use of music sources, and examined the parallel double mediating model of reward sensitivity and social dilution of responsibility on that relationship. To achieve the purpose this study, data were collected from 302 male and female high school students living in Seoul metropolitan area, and a double mediating effect was analysed with PROCESS Macro 3.5 Model 4. Results indicated that outcome expectancy was positively correlated with reward sensitivity, social dilution of responsibility, and illegal use of music sources of high school students, whereas reward sensitivity and social dilution of responsibility were positively correlated with illegal use of music sources. This study found that reward sensitivity and social dilution of responsibility were mediating outcome expectancy and illegal use of music sources in parallel. These findings suggest that psychological mechanisms lead adolescents use illegal music sources might be important, and provide useful information for making strategies to prevent adolescents' uses of illegal music sources.

Predicting Compressive Strength of Fly Ash Mortar Considering Fly Ash Fineness (플라이 애시 미세도를 고려한 플라이 애시 모르타르의 압축 강도 예측)

  • Sun, Yang;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.90-91
    • /
    • 2020
  • Utilization of upgraded fine fly ash in cement-based materials has been proved by many researchers as an effective method to improve compressive strength of cement based materials at early ages. The addition of fine fly ash has introduced dilution effect, enhanced pozzolanic reaction effect, nucleation effect and physical filling effect into cement-fly ash system. In this study, an integrated reaction model is adpoted to quantify the contributions from cement hydration and pozzolanic reaction to compressive strength. A modified model related to the physical filling effect is utilized to calculate the compressive strength increment considering the gradual dissolution of fly ash particles. Via combination of these two parts, a numerical model has been proposed to predict the compressive strength development of fine fly ash mortar considering fly ash fineness. The reliability of the model is validated through good agreement with the experimental results from previous articles.

  • PDF

Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames (석탄가스 난류비예혼합 화염장의 해석)

  • Lee, Jeong-Won;Kim, Chang-Hwan;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF