• Title/Summary/Keyword: dilogarithm

Search Result 3, Processing Time 0.015 seconds

SOME IDENTITIES INVOLVING THE LEGENDRE'S CHI-FUNCTION

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.219-225
    • /
    • 2007
  • Since the time of Euler, the dilogarithm and polylogarithm functions have been studied by many mathematicians who used various notations for the dilogarithm function $Li_2(z)$. These functions are related to many other mathematical functions and have a variety of application. The main objective of this paper is to present corrected versions of two equivalent factorization formulas involving the Legendre's Chi-function $\chi_2$ and an evaluation of a class of integrals which is useful to evaluate some integrals associated with the dilogarithm function.

ANALYTIC AND GEOMETRIC PROPERTIES OF OPEN DOOR FUNCTIONS

  • Li, Ming;Sugawa, Toshiyuki
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.267-280
    • /
    • 2017
  • In this paper, we study analytic and geometric properties of the solution q(z) to the differential equation q(z) + zq'(z)/q(z) = h(z) with the initial condition q(0) = 1 for a given analytic function h(z) on the unit disk |z| < 1 in the complex plane with h(0) = 1. In particular, we investigate the possible largest constant c > 0 such that the condition |Im [zf"(z)/f'(z)]| < c on |z| < 1 implies starlikeness of an analytic function f(z) on |z| < 1 with f(0) = f'(0) - 1 = 0.

DOUBLE SERIES TRANSFORMS DERIVED FROM FOURIER-LEGENDRE THEORY

  • Campbell, John Maxwell;Chu, Wenchang
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.551-566
    • /
    • 2022
  • We apply Fourier-Legendre-based integration methods that had been given by Campbell in 2021, to evaluate new rational double hypergeometric sums involving ${\frac{{1}}{\pi}}$. Closed-form evaluations for dilogarithmic expressions are key to our proofs of these results. The single sums obtained from our double series are either inevaluable $_2F_1({\frac{4}{5}})$- or $_2F_1({\frac{1}{2}})$-series, or Ramanujan's 3F2(1)-series for the moments of the complete elliptic integral K. Furthermore, we make use of Ramanujan's finite sum identity for the aforementioned 3F2(1)-family to construct creative new proofs of Landau's asymptotic formula for the Landau constants.