• Title/Summary/Keyword: diisopropylfluorophosphate

Search Result 12, Processing Time 0.025 seconds

Seizure-related Encephalopathy in Rats Intoxicated with Diisopropylfluorophosphate

  • Kim, Yun-Bae;Hur, Gyeung-Haeng
    • Toxicological Research
    • /
    • v.17 no.2
    • /
    • pp.73-82
    • /
    • 2001
  • The incidence and distribution of necrotic and apoptotic neural cells, and activated astrocytes in the brain of rats intoxicated intra peritoneally with diisopropylfluorophosphate were investigated. Pyridostigmine bromide (0.1 mg/kg) and atropine methylnitrate (20 mg/kg) were pretreated intramuscularly 30 min and 10 min, respectively, prior to diisopropylfluorophosphate (4-10 mg/kg) administration. Diisopropylfluorophosphate induced severe limbic seizures, early necrotic and delayed apoptotic brain injuries, and rapid astrocytic responses. The necrosis, which was closely related to seizure intensity, was observed as early as 1 hr after intoxication predominently in hippocampal pyramidal cells, cerebellar Purkinje cells and neurons in pyriform/entorhinal cortices, showing malacia of neurophils. In contrast, apoptosis started to appear 12 hr after intoxication in neurons in thalamus, amygdala and neocortex, and ephendymal cells surrounding the 4th ventricle. Since marked apoptosis was induced in rats exhibiting relatively-low seizure intensity, the degree of necrosis and apoptosis was shifted to each type of injury according to the seizure intensity. Activated astrocytes, observed within 1 hr along the limbic system, were suggested to affect the neural injury patterns by producing high level of nitric oxide. However, the distribution of activated astrocytes was not in parallel with those of necrotic or apoptotic injuries, implying that the astrocytic responses resulted from seizure activity rather than neural injuries. Furthermore, astrocytes in malacic tissues disappeared during the severe limbic seizures. Therefore, it would be one of the cautionary notes on the expression of glial fibrillary acidic protein in astrocytes as a biochemical marker of brain injuries following acute exposure to organophosphates.

  • PDF

Detoxification Properties of Surface Aminated Cotton Fabric (아민화 표면 처리된 면직물의 제독 성능 연구)

  • Kim, Changkyu;Kwon, Woong;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • Pursuing the fabric materials for military chemical warfare protective clothing with the improved detoxification properties, this study investigated the simple and effective cotton treatment method using pad-dry-cure process and 3-aminopropyltrimethox ysilane(APTMS) solution for surface amination. Detoxification properties of the untreated and treated cotton fabrics were evaluated via decontamination of chemical warfare agent simulant, DFP(diisopropylfluorophosphate). The surface aminated cotton fabric increased the rate of the hydrolysis of DFP by the factor of 3 and the decontamination ratio reached 88.2% after 24h. Therefore, the surface amination of the cotton fabric with APTMS can be an effective pathway to prepare the material for protective clothing against chemical warfare agents.

ORGANOPHOSPHATE-INDUCED BRAIN DAMAGE: NECROSIS, APOPTOSIS AND GFAP EXPRESSION

  • Kim, Yun-Bae;Hur, Gyeung-Baeng;Phi, Taek-San;Cheon, Ki-Cheol;Kim, Wang-Soo;Yeon, Gyu-Baek
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.123-123
    • /
    • 2001
  • The distribution of necrotic and apoptotic neural cells, and expression of astrocytic glial fibrillary acidic protein (GFAP) in the brain of rats poisoned intraperitoneally with diisopropylfluorophosphate were investigated. Pyridostigmine bromide (0.1 mg/kg) and atropine methylnitrate (20 mg/kg), which are centrally inactive, were treated intramuscularly 30 min and 10 min, respectively, before diisopropylfluorophosphate (4 - 10 mg/kg) poisoning to reduce the mortality.(omitted)

  • PDF

Comparative Study of Detoxification Properties of 3-Aminopropyl trimethoxysilane and Chitosan treated Cotton Fabric (3-아미노프로필트리메톡시실란과 키토산 처리 면직물의 제독 특성 비교 연구)

  • Kwon, Woong;Kim, Changkyu;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.96-102
    • /
    • 2020
  • Recently, it was reported that chitosan or APTMS(3-aminopropyltrimethoxysila ne) treatment to cotton using the simple pad-dry-cure method has potential to prepare textile materials for military chemical warfare protective clothing. However, it is not confirmed which method is more efficient. Therefore, this study aims to quantitatively compare detoxification properties of chitosan treated cotton fabric with those of APTMS treated cotton fabric. Detoxification properties were evaluated using the well-known organic phosphorous nerve agent stimulant, diisopropylfluorophosphate(DF P). With the same amount of chitosan and APTMS on the surface of the cotton fabrics, APTMS treated cotton fabric exhibited 10% higher detoxification properties than chitosan treated cotton fabric based on the rate of DFP hydrolysis and half-live of DFP calculated from the DFP decontamination ratios of the treated cotton fabrics through time. Therefore, APTMS treatment can be more efficient method to prepare the textile materials for military protective clothing than chitosan treatment.

Seizure-related Brain Injuries in Organophosphate Poisoning

  • Hur, Gyeung-Haeng;Lee,Yong-Soon;Han, Byung-Gon;Yeon, Gyu-Baek;Kim, Yun-Bae
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.215-222
    • /
    • 1997
  • The features of seizure-related brain injuries in rats poisoned i.p. with diisopropylfiuorophosphate were investigated. Pyridostigmine bromide (0.1 mg/kg) and atropine methylnitrate (20 mg/kg), which are centrally inactive, were pretreated i.m. 30 min and 10 min, respectively. before diisopropylfluorophosphate (10 mg /kg, $2LD_50$) poisoning to reduce the mortality and eliminate peripheral signs. Diisopropylfluorophosphate induced severe limbic seizures, and early necrotic and delayed apoptotic brain injuries. The necrotic brain injury, which was closely related to seizure intensity, was exerted as early as 1 hr predominently in hippocampus and piriform cortex. showing spongiform change (malacia) of neurophils in severe cases, in contrast to a typical apoptotic (TUNEL-positive)pattern after 12 hr in thalamus, and a mixed type in amygdala. Nitric oxide content in cerebrospinal fiuid significantly increased after 2 hr, reaching a maximal level at 6 hr. Pretreatment with $_L-N^G$-nitroarginine, an inhibitor of nitric oxide synthase, reduced nitric oxide content and attenuated only apoptotic brain injury in all four brain regions examined without affecting seizure intensity and necrotic injury. Taken together, early necrotic and delayed apoptotic brain injuries induced by diisopropylfiuorophosphate poisoning in rats may be related to seizure intensity and nitric oxide production, respectively.

  • PDF

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric (키토산 처리 면직물의 군사용 화학 작용제 모사체 분해 연구)

  • Kwon, Woong;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 2020
  • This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.

Detoxification Properties of Guanidinylated Polyethyleneimine Treated Polypropylene Non-woven Fabric Against Chemical Warfare Agents (구아니딘화 폴리에틸렌이민이 처리된 폴리프로필렌 부직포의 군사용 화학 작용제 제독 특성)

  • Kim, Jiyun;Kwon, Woong;Kim, Changkyu;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study aims to prepare the fabric with detoxification properties against chemical warfare agent by the simple treatment. For this purpose, polypropylene non-woven fabric(PP) was treated with polyethyleneimine(PEI) and guanidinylated PEI and detoxification properties of the guanidinylated PEI treated PP were evaluated using diisopropylfluorophosphate(DFP), as a chemical warfare agent simulant, and compared with the untreated and PEI treated PP. The half-lives of DFP on guanidinylated PEI treated PP and untreated PP were 334 min and 714 min, respectively. The half-life of DFP with guanidinylated PEI treated PP was 53.22% shorter than with untreated PP. This result shows that guanidine group in guanidinylated PEI treated PP was acted as a base catalyst for hydrolysis of DFP and decreased half-life of DFP. Therefore, it is expected that guanidinylated PEI treatment can be an simple pathway to prepare the detoxification fabric material for protective clothing against chemical warfare agents.

$\beta$-EUDESMOL CAUSES VASODILATORY EFFECT IN THE NORMOTENSIVE RAT

  • Lim, Dong-Yoon;Shin, Hye-Gyeong
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.138.1-138.1
    • /
    • 2003
  • $\beta$-Eudesmol is one of various compounds derived from the bark of Magnolia obovata Thunberg, a medicinal plant. It has been shown that $\beta$-eudesmol also markedly alleviated muscle fasciculation, tremor and convulsion induced by diisopropylfluorophosphate and prolonged the time to death in mice (Chiou et al., 1995). Actually, the extract of magnolia bark has been shown to have depressant actions on the cental nervous system (Watanabe et al., 1973). (omitted)

  • PDF

Prophylactic Detoxification by Physostigmine and Procyclidine of Diisopropylfluorophosphate Poisoning

  • Kim, Yun-Bae;Hur, Gyeung-Haeng;Sungho Shin;Yeon, Gyu-Baek;Park, Seung-Ju;Kang, Jong-Koo
    • Toxicological Research
    • /
    • v.16 no.3
    • /
    • pp.187-193
    • /
    • 2000
  • The antidotal, anticonvulsant and neuroprotective effects of physostigmine and procyclidine. the combinational prophylactics for organophosphate poisoning, were evaluated in rats. In comparison with a low protective effect (1.6 fold) of atropine (15 mg/kg) and 2-pralidoxime (30 mg/kg), the traditional antidotes regimen, a marked protection ratio of 7.3 fold was achieved by combinational pretreatment with physostigmine (0.05 mg/kg) and procyclidine (10 mg/kg), which was superior to that (3.5 fold) with pyri-dostigmine (0.1 mg/kg) and atropine (15 mg/kg). Rats exposed to a high dose (10 mg/kg. 2 X $LD_{50}$) of diisopropylfluorophosphate showed severe epileptiform seizures on electroencephalography, resulting in necrotic and apoptotic brain injuries in discrete brain regions under histopathological and TUNEL immuno-histochemical examinations in 24 hr. Such seizures and excitotoxic brain injuries were fully prevented by pretreatment with physostigmine (0.05 mg/kg) and procyclidine (10 mg/kg). in contrast to a negligible effect of pyridostigmine (0.1 mg/kg) and atropine (15 mg/kg). Taken together, it is proposed that the prophylactics composed of physostigmine and procyclidine could be a promising regimen for the prevention of lethality, seizures and brain injuries induced by organophosphate poisoning.

  • PDF

Purification and Characterization of a Collagenolytic Protease from the Filefish, Novoden modestrus

  • Kim, Se-Kwon;Park, Pyo-Jam;Kim, Jong-Bae;Shahidi, Fereidoon
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • A serine collagenolytic protease was purified from the internal organs of filefish Novoden modestrus, by ammonium sulfate, ion-exchange chromatography on a DEAE-Sephadex A-50, ion-exchange rechromatography on a DEAE-Sephadex A-50, and gel filtration on a Sephadex G-150 column. The molecular mass of the filefish serine collagenase was estimated to be 27.0 kDa by gel filtration and SDS-PAGE. The purified collagenase was optimally active at pH 7.0-8.0 and $55^{\circ}C$. The purified enzyme was rich in Ala, Ser, Leu, and Ile, but poor in Trp, Pro, Tyr, and Met. In addition, the purified collagenolytic enzyme was strongly inhibited by N-P-toluenesulfonyl-L-lysine chloromethyl ketone (TLCK), diisopropylfluorophosphate (DFP), and soybean trypsin inhibitor.