• Title/Summary/Keyword: digital terrain analysis

Search Result 213, Processing Time 0.027 seconds

Analysis of Digital Terrain Model Display by Comparison of GIS Shaded Relief and Rendering (GIS 음영기복과 렌더링의 비교에 의한 수치지형모형의 표현 분석)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.127-136
    • /
    • 2006
  • Shaded relief is used in the analysis of digital terrain model, but accurate shadow zone has not been affirmed on account of idea only shadow of terrain that would be in shadow are shaded. This study is to analyze each display difference of a digital terrain model by grasping the shadow characteristics of terrain and comparing shaded relief function used terrain display of GIS with a rendering technique. After terrain with road in subject area is selected and created to digital terrain model of TIN, shaded relief and rendering according to altitude and azimuth of the sun at 9:00 am and 3:00 pm is applied. As the results, only backward portions of the terrain that is in shadow from the sunlight are shaded in case of shaded relief. The rendering created the shadow, which is cast by terrain features. By these mutual comparison, this study represented data for understanding of shaded relief. And it is expected that the rendering method could be used to analyze sunshine influence.

  • PDF

Evaluating Suitable Analysis Methods Using Digital Terrain in Viewshed Analysis (수치지형도를 활용한 가시권 분석의 적정 분석방법에 관한 연구)

  • Yeo, Chang-Hwan;Jang, Young-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.40-48
    • /
    • 2011
  • The purpose of this study is to contribute enhancing the accuracy of viewshed analysis through the explanation for an analysis method of viewshed analysis using GIS. According to previous studies, the visible area using digital terrain in viewshed analysis depends on a visible interest area, scale of terrain, spatial resolution and surface data. In this study, we used trend analysis and RMSE analysis in order to find the effect of a visible interest area, scale of terrain, etc in viewshed analysis. Results of this study are as follows. First, the result of viewshed analysis depends on a visible interest area, scale of terrain, spatial resolution, surface data such as previous studies. Second, the results in forest area are reliable than those of flat area in terms of a visible interest area. Third, the results based on raster grid data are stable than those of TIN(triangulated irregular network) in terms of input surface data. Fourth, according to the result of trend and RMSE analysis, the spatial resolution for analysis is differently applied to different scales digital terrain map in viewshed analysis. In detail, it is desirable that the spatial resolution is set less than 10m(in the case of 1/1,000 digital terrain map), 20m(in the case of 1/5,000 map), 30m(1/25,000 map).

Analysis of A Watershed Terrain Factors using Digital Elevation Model (수치표고모형에 의한 유역에서의 지형인자 분석)

  • 양인태;천기선;박재훈
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • A watershed terrain factor is known to the very important in studies of a stream and a watershed. We have obtained the terrain factor in map directly or we have generated it in a digitalized map. In this study, DTED (Digital Terrain Elevation Data) offering in DMA(Defense Mapping Agency) was used to create a stream and a watershed and to extract the terrain factor. As comparison of the terrain factors gererated in digitalized map with the terrain factors extracted in DTED, DTED could be used to extract a terrain factor for a watershed management.

  • PDF

Development of Digital Terrain Analysis for an Identification of Wetland Area at Mountainous Watershed (산지습지의 수문지형분석 방법론의 개발)

  • Jang, Eun-Se;Lee, Eun-Hyung;Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2015
  • In this study, a digital terrain analysis had been performed for a mountainous watershed having wetlands. In order to consider the impact for wetland in the flow determination algorithm, the Laplace equation is implemented into the upslope accounting algorithm of wetness computation scheme. The computational algorithm of wetland to spatial contribution of downslope area and wetness was also developed to evaluate spatially distributed runoff due to the presence of wetland. Developed schemes were applied to Wangpichun watershed located Chuncuk mountain at Ulzingun, South Korea. Both spatial distribution of wetness and its histogram indicate that the developed scheme provides feasible consideration of wetland impact in spatial hydrologic analysis. The impact of wetland to downslope propagation pattern is also useful to evaluate spatially distributed runoff distribution.

Analysis on MAUP' Effects in Visibility Analysis using GIS (가시권 분석에서의 MAUP 영향 분석)

  • Lee, Joon-Hak;Kim, Hang-Deuk;Oh, Kyoung-Doo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • The purpose of this study is to analyze the MAUP's effect in visibility analysis using GIS. MAUP normally occurs in the process in terrain spatial analysis including visibility analysis. There are two different types of grid data(based on digital map and Digital Terrain Elevation Data) and 10 different types of areal units are made for modeling, such as $5m{\times}5m,\;10m{\times}10m,\;15m{\times}15m,\;20m{\times}20m,\;25m{\times}25m,\;30m{\times}30m,\;35m{\times}35m,\;40m{\times}40m,\;45m{\times}45m,\;50m{\times}50$. By analyzing the result, it was possible to observe varying viewshed areas according to different grid cell sizes and the viewshed area did not varied linearly as expected. From a general point of view, smaller unit data map out the real world in more detail, but the results of modeling do not always reach a good conclusion when data are used in modeling for terrain analysis because of the MAUP' effect. The grid cell sizes of 30m or less seems to be adequate for visibility analysis, including terrain analysis considering vegetation heights.

A NUMERICAL STUDY ON THE WIND EFFECTS OF MOUNTAINOUS TERRAIN FOR THE SKI RESORT (스키장의 풍환경 개선을 위한 수치해석 연구)

  • Jung, Jae-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.493-495
    • /
    • 2010
  • A three-dimensional flow simulation is performed to investigate the flow field in the ski resort on complex terrain. The present paper aims to study the wind effects of mountainous terrain on the gondola safety. Strong wind happens in the ski resort on the mountain by complex terrain and it causes the dangerous accident of gondola. A digital map around the ski resort area is used to model the actual complex terrain for a 3-D analysis domain. Wind direction and speed to be used as a boundary condition are taken from local meteorological reports. The numerical results show details of the velocity distribution around a ski resort. From the results, we can suggest the modification of the installation of gondola for the safety due to strong wind.

  • PDF

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.

Comparative Analysis of Terrain Slope Using Digital Map, LiDAR Data (수치지형도와 LiDAR 데이터를 이용한 지형경사도 비교분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;Rhee, Won-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Recently, the efforts of systematic understanding and utilization of geographic phenomenon for human life as a important factor among activity of mankind are increasing. It is necessary to express topography connected with space. Especially, the technology of geographic analysis using DEM can supply the information rapidly and accurately about elevation and terrain slope of the subject area under the necessity of high 3D quality geographic information. In this study, creating more precise DEM derived from LiDAR data, quantitative analysis on the subject area about elevation and terrain slope is done under comparison with Digital Topographic map Scale 1:1000. LiDAR data is more detailed than Digital Topographic map to express the elevation of the subject area ($39.89{\sim}77.48m$), and terrain slope by analysis using DEM derived from LiDAR data come out minutely about 90%. It can be concluded that the LiDAR data is very applicable and accurate for 3D topographic terrain slope analysis.

  • PDF

Analysis of Terrain by LIDAR Data (LiDAR 자료에 의한 지형해석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;We, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.389-397
    • /
    • 2006
  • The purpose of the present paper is to offer an analysis of LiDAR data processing and three dimensional terrain for Geographic Information System (CIS) applications. Generally, LiDAR survey is the method which obtains quantitative and qualitative information of the terrain using airborne laser scanning (ALS). We will get a most topographic data at a Triangular Irregular Network (TIN), Digital Surface Model (DSM) and Digital Elevation Model (DEM) using LiDAR data. We examined many factors such as visibility, hillshade, aspect and slope using DEM and DSM. The analyzing results obtained from each item are thought to be regarded as leading factors in the terrain analysis. It is to be hoped that LiDAR survey will contribute a new approach to the terrain analysis.

Terrain Analysis of Odaesan National Park using Digital Elevation Model (수치고도모델을 이용한 오대산 국립공원지역의 지형분석)

  • 김철민;이준우;권태호
    • Korean Journal of Environment and Ecology
    • /
    • v.9 no.1
    • /
    • pp.70-76
    • /
    • 1995
  • Digital elevation model for analysing terrain of Odaesan National Park was constructed by 1:50.000 topographical map. The fifty five percent of total area is located in higher than 900m in elevation, while ninty percent of the conservation area in Pirobong is above 1,100m. In other word, seventy percent of Odaesan National Park area has the slope of more than 20$^{\circ}$and is steep mountain. The aspect of the mountain mainly turned out to be eastward and westward.

  • PDF