• Title/Summary/Keyword: digital rotor position

Search Result 64, Processing Time 0.026 seconds

Speed Sensorless Control of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 속도제어)

  • Shin, Kyoo-Jae;Kwon, Young-Ahn
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.166-172
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia and high efficiency. However, position sensor is essential in SRM in order to synchronize the phase excitation to the rotor Position. The Position sensors increase the cost of drive system and tend to reduce system reliability. This paper investigates the speed control of sensorless SRM in which the Phase current and change rate are utilized in position decision, and the period of dwell angle is variable for speed control. The proposed system consists of Position decision circuit, speed controller, digital logic commutator, switching angle controller and inverter The performances in the proposed system are verified through the experiment.

  • PDF

A Research on the Digital Controller of Switched Reluctance Motor Using DSP (DSP를 이용한 Switched Reluctance Motor의 디지털 제어기에 관한 연구)

  • 박성준;박한웅;김정택;추영배;이만형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.263-272
    • /
    • 1998
  • This paper presents the new control strategy that can minimizes the torque ripple by considering the magnetic nonlinearity and phase torque averlapping intervals, and describes the whole SRM drive system using proposed control method implemented by DSP(Digital Signal Processor). To do this, inductance and torque are, at first, measured according to the variation of rotor position angle while current is kept constant at predetermined several values. From these measured values, the entire inductance and torque for any current and rotor position are inferred by using neural network. And the waveform of the reference phase torque is determined for the torque ripple to be minimized considering the torque overlap between phases. The controller is designed for the actual torque obtained by the inferred torque look-up table using measured current and rotor position angle to track the predetermined reference phase torque by delta modulation technique. To perform a real time processing and ensure the reliability of the controller, DSP is implemented.

  • PDF

Fully Digitalized PWM and Vector Control of the Squirrel-Cage Induction Motor (눙형 유도 전동기의 전 디지털화된 PWM 발생 및 벡테제어)

  • 김한태;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.567-573
    • /
    • 1991
  • Full direct digital control of induction motor driver is implemented with a minimal hardware structure. This paper deals with the presentation of a low-cost single-chip microprocessor-based control system for three-phase PWM generation and vector control that control speed of the induction motor using the field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are calculated from rotor angular velocity and stator current. Through simulation and experiment, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

Modeling and Simulation of A High Performance Vector Controlled Induction Motor Drive (고성능 벡터제어 유도기 구동장치의 모델링과 시뮬레이션)

  • Kim, Jong-Ku;Choi, Uk-Don;Son, Jin-Geun;Lee, Jong-Chan;Kim, Jin-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.366-368
    • /
    • 1994
  • This paper deals with the vector control that control of torque and speed of the induction motor using field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are caculated from rotor angular velocity and stator current. Through modeling and digital simulation with a voltage source inverter, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

Design of an Adaptive Backstepping Position Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 위치제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1227-1229
    • /
    • 2007
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the position of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.

  • PDF

Sensorless Control for the Synchronous Reluctance Motor Using Reference Flux Estimation

  • Ahn Joon-Seon;Kim Sol;Kim Yong-Tae;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.324-330
    • /
    • 2005
  • The complex sensorless control scheme is not practical for use in the field of home appliance systems because it is not economical. Therefore, it is necessary to introduce a simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. This paper presents the principle of the rotor position estimation with comparison of the estimated flux linkage and reference flux linkage. In order to verify the feasibility of the control scheme, ACSL is used for the simulation and TI DSP TMS320F240 is used for the experiment.

Analysis of Estimation Errors in Rotor Position for a Sensorless Control System Using a PMSM

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.748-757
    • /
    • 2012
  • In a sensorless control system with a Permanent Magnet Synchronous Motor (PMSM), the angular position of the rotor flux can be estimated by a voltage equation. However, the estimated angle may be inaccurate due to various causes. In this paper, it was comprehensively analyzed how various causes affect the angle error. As a result of the analysis, an error equation intuitively describing these relationships was derived. The parameter errors of a PMSM and the non-ideal properties of the driving system were identified as error-causing factors. To demonstrate the validity of the error equation, PMSMs were tested at various operating points. The variations in angle errors could be well explained with the error equation.

A Sensorless Position Control System of SPMSM with Direct Torque Control (직접 토크제어에 의한 센서리스 SPMSM의 위치 제어 시스템)

  • Kim Min-Ho;Kim Nam-Hun;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper presents a implementation of digital sensorless position control system of surface permanent-magnet synchronous motor (SPMSM) drive with a direct torque control (DTC). The system are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0 (kW) purposed servo drive SPMSM.

  • PDF

A Study on the Resolver Interface using a Rotor Position Detector Method with DFT (DFT에 의한 회전자 위치 검출 방법을 사용한 레졸버 인터페이스에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4550-4560
    • /
    • 2011
  • Generally, a optical encoder is used to detect velocity for controling the electronic motor, the resolver is used when it is hard structurally to adjust encoder to electronic motor. so, the resolver has weakness in price in compare with encoder, but in case of controling the position of a magnetic polar, the resolver has stead detecting the absolute position of a rotator. This study is about the digital programing velocity detector which uses a minimum hardware : filter for detecting the revolve speed and rotor position of the motor by means of the resolver.

Sensorless control of a permanent magnet synchronous motor (영구 자석형 동기전동기의 센서리스 제어)

  • Yang Soon-Bae;Hong Chan-Hee;Cho Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.289-292
    • /
    • 2002
  • A sensorless control of a PM synchronous motor under the parameter variation is presented. The rotor position is estimated by using the d-axis and q-axis current errors between the real system and motor model of the estimator. The stator resistance is measured at low speeds when the motor changes its rotating direction. The gains in the position estimator are also adapted according to the motor speeds.

  • PDF