• Title/Summary/Keyword: digital protection relay

Search Result 86, Processing Time 0.027 seconds

Development of Current-based Compact Digital Protective Relay for Induction Motor Protection (중용량 전동기보호를 위한 전류형 디지털 보호계전기 개발)

  • Jung, Jong-Jin;Kim, Joong-Pyo;Shin, Jong-Han;Park, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.140-142
    • /
    • 2005
  • This paper describes the current- based compact digital motor protective relay for low and high voltage induction motors, which are widely used in industrial and commercial power systems. The existing protective relays for motor protection had only overload, short circuit, reverse phase, open circuit and grounding protective elements, and measurement, start/stop control function. But in present day, for automation system, various functions are required, especially motor management and sequence control function and more. To meet these requirements, we developed an economic current-based compact digital motor protective relay which had various function to control, manage and monitor the induction motor.

  • PDF

State of Art of the Advanced Digital Protection Relay (차세대 디지탈 보호 계전기의 기술동향)

  • Cho, K.R.;Jung, B.T.;Kang, Y.C.;Park, J.K.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.51-53
    • /
    • 1994
  • Recently, advanced digital protection relays were developed in Japan. This improved relaying system for the next generation is expected to have higher performance for the discrimination of the fault, functions for multi-purpose use of acquired data, easy operation and maintance, and also have friendly man-machine interface. This paper describes the system configuration of the developed relay and its representive characteristics.

  • PDF

Simulation of the Distance Relay Using EMTP MODELS

  • J.Y. Heo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.26-32
    • /
    • 2004
  • Digital technology has advanced significantly over the years both in terms of software tools and hardware availability. It is now applied extensively throughout many area of electrical engineering including protective relaying in power systems. Digital relays have numerous advantages over traditional analog relays, such as the ability to accomplish what is difficult or impossible using analog relays. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations are disadvantaged in that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used. However, the latter requires large space and is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is implemented and the distance relay is interfaced with a test power system. The distance relay's performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including its drawbacks/limitations by using EMTP MODELS. Equally important, this approach facilitates any changes that need to be carried out in order to enhance the Distance Relay under test/examination.

A Design of Power Management and Control Systems Using Digital Protective Relays (디지털보호계전기를 활용한 전력감시제어시스템 설계)

  • Lee, Sung-Hwan;Ahn, Ihn-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.191-193
    • /
    • 2000
  • In this paper, being different from traditional methods, we design digital protective relay which can be applied to power management and control systems of not only small and medium but also a large scale plants. The digital protective relay was designed with DSP CPU(TMS320C31) to protect and measure more quickly and precisely. We will present test result which it performed according to the standards of Korea Electrical Manufactures Cooperative to prove the faculties of digital protective relay. The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protection relay is improved within ${\pm}5%$.

  • PDF

A Percentage Current Differential Relaying Algorithm for Bus Protection Blocked by a CT Saturation Detection Algorithm (변류기 포화 곤단 알고리즘으로 억제된 모선보호용 비율 전류차동 계전방식)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • This paper describes a percentage current differential relaying algorithm for bus protection blocked by a CT saturation detection algorithm. The detection algorithm blocks the output of a current differential relay only if a differential current is caused by CT saturation in the case of an external fault. Moreover, if a current differential relay operates faster than the detection algorithm, the blocking signal is not ignited. On the other hand. if the detection algorithm operates faster than a current differential relay, the output of the relay is blocked. The results of the simulation show that the proposed algorithm can discriminate internal faults from external faults ever when a CT is saturated in both cases. This paper concludes by implementing the algorithm into the TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory The algorithm can not only increase the sensitivity of the current differential relay but Improve the stability of the relay for an external faults.

A Transformer Protection Relay Based on Induced Voltages

  • Kang, Yong-Cheol;Lee, Byung-Eun
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.70-78
    • /
    • 2003
  • This paper describes a transformer protection relay based on induced voltages. The ratio of the induced voltages of the primary and secondary windings is equal to the turns ratio during normal operating conditions such as magnetic inrush, overexcitation, and steady state, but it differs from the turns ratio in the case of internal faults. For a single-phase and a three-phase Y-Y transformer, the induced voltages are estimated and the ratios are compared with the turns ratio. For three-phase Y-Δ transformers, the differences between the induced voltages are estimated to use the line currents because delta-winding currents are practically unavailable. The proposed relay is tested under various conditions such as magnetic inrush, internal winding faults, overexcitation, and different core characteristics. The results evidently indicate that the relay successfully discriminates internal faults from magnetic inrush and overexcitation. This paper concludes by implementing the relay into a TMS320C6701 digital signal processor and reports satisfactory results. The relay requires no hysteresis data and can reduce the operating time of a relay.

Adaptive Protection Algorithm for Overcurrent Relay in Distribution System with DG

  • Sung, Byung Chul;Lee, Soo Hyoung;Park, Jung-Wook;Meliopoulos, A.P.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1002-1011
    • /
    • 2013
  • This paper proposes the new adaptive protection algorithm for inverse-time overcurrent relays (OCRs) to ensure their proper operating time and protective coordination. The application of the proposed algorithm requires digital protection relays with microcontroller and memory. The operating parameters of digital OCRs are adjusted based on the available data whenever system conditions (system with distributed generation (DG)) vary. Moreover, it can reduce the calculation time required to determine the operating parameters for achieving its purpose. To verify its effectiveness, several case studies are performed in time-domain simulation. The results show that the proposed adaptive protection algorithm can keep the proper operating time and provide the protective coordination time interval with fast response.

A Study on Simulator for Testing of Digital Protective Relay (디지털 보호계전기의 시험을 위한 시뮬레이터에 관한 연구)

  • Park, Chul-Won;Shin, Myong-Chul;Ahn, Tae-Pung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • In this work, the digital simulator for testing of digital protective relay is presented. The proposed simulator software has EMTP simulation data file conversion, sequence waveform generation, user define simulation data generation, communication engine, data analysis engine and measurements function etc. The simulator hardware is designed using 32bit floating point DSP architecture to achieve flexibility and high speed operation. This simulator is tested to evaluate the performance of relay simulator by using a output data of simulation model on EMTP.

Development and Application of Digital D.C Protection Relay for the test line of Light Rail Transit (경량전철 시험선로의 디지털 직류보호제어장치 개발 및 적용)

  • JEON Y.J.;KIM S.N.;KIM J.H.;BAEK B.S.;LEE H.D.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1373-1375
    • /
    • 2004
  • This paper presents the design of DC protection Relay for Light Rail Transit system, which is very beginning product in domestic. Protection Function characteristic, principle and I/O interface including interlock signal has been introduced. The protection algorithm and EMC characteristics have been certified by official organization and Type test report has been introduced. Up to date in domestic, the test procedure for DC Protection relay hasn't been established so the new method and test equipment based on IEC regulations are proposed. Finally the product will be proved based on field test.

  • PDF

Design and Implementation of Digital Motor Control Center Including Load Control Function (부하제어 기능을 갖는 디지털형 전동기제어반의 설계 및 구현)

  • 우천희;강신준;이덕규;구영모;김학배;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.868-875
    • /
    • 1999
  • In this paper, digital motor control center using protection relay is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which have various load environments and capacities in power systems. Digital motor control center is employed by power supervisory control systems without separate remote terminal unit and transducers adding communicational ability. Also we develope a maximum demand controller to control the load effectively at peak status and a power factor controller to minimize real power losses and improve the power factor. Therefore, when using the developed controller, real time computation is possible by loading DSP in hardware and applying real-time kernel which can convert each algorithm to task module.

  • PDF