• Title/Summary/Keyword: digital images

Search Result 3,399, Processing Time 0.034 seconds

VR media aesthetics due to the evolution of visual media (시각 미디어의 진화에 따른 VR 매체 미학)

  • Lee, Dong-Eun;Son, Chang-Min
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.633-649
    • /
    • 2017
  • The purpose of this study is to conceptualize the changing aspects of human freedom of observation and viewing as the visual media evolves from film to 3D stereoscopic film and VR. The purpose of this study is to conceptualize the aspect of freedom and viewing aspect from the viewpoint of genealogy. In addition, I will identify the media aesthetic characteristics of VR and identify the identity and ontology of VR. Media has evolved around the most artificial sense of human being. There is a third visual space called screen at the center of all the reproduction devices centering on visual media such as painting, film, television, and computer. In particular, movies, television, and video screens, which are media that reproduce moving images, pursue perfect fantasy and visual satisfaction while controlling the movement of the audience. A mobilized virtual gaze was secured on the assumption of the floating nature of the so-called viewers. The audience sees a cinematic illusion with a view while seated in a fixed seat in a floating posture. They accept passive, passive, and passively without a doubt the fantasy world beyond the screen. But with the advent of digital paradigm, the evolution of visual media creates a big change in the tradition of reproduction media. 3D stereoscopic film predicted the extinction of the fourth wall, the fourth wall. The audience is no longer sitting in a fixed seat and only staring at the front. The Z-axis appearance of the 3D stereoscopic image reorganizes the space of the story. The viewer's gaze also extends from 'front' to 'top, bottom, left, right' and even 'front and back'. It also transforms the passive audience into an active, interactive, and experiential subject by placing viewers between images. Going one step further, the visual media, which entered the VR era, give freedom to the body of the captive audience. VR secures the possibility of movement of visitors and simultaneously coexists with virtual space and physical space. Therefore, the audience of the VR contents acquires an integrated identity on the premise of participation and movement. It is not a so-called representation but a perfection of the aesthetic system by reconstructing the space of fantasy while inheriting the simulation tradition of the screen.

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF

THE CHANGE OF CANAL CONFIGURATION AFTER INSTRUMENTATION BY SEVERAL NICKEL-TITANIUM FILES IN THE SIMULATED CANAL WITH ABRUPT CURVATURE (수종의 엔진구동형 니켈-타이타늄 파일에 의한 급한 만곡의 근관 성형시 근관형태 변화에 대한 비교연구)

  • Lim, Jung-Jang;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2005
  • The purpose of this study was to evaluate which type of Ni-Ti files are able to maintain canal configuration better in the simulated canal with abrupt curvature near it's apex. Ninety six simulated root canals were made in epoxy resin and $\sharp$15 finger spreader was used as root canal templates. The simulated root canals were made with radius of curvature of 1.5mm, 3.0mm, 4.0mm, 6.0mm respectively and the angle of curvature of all simulated canals were adjusted to 90 degree. The simulated canals were instrumented by ProFile, ProTaper, Hero 642, and $K^3$ at a 300 rpm using crown-down pressureless technique. Pre-instrumented and post-instrumented images were taken by digital camera and were superimposed with Adobe Photos hop 6.0 program. Images were compared by image analysis program. The changes of canal width at the inner and outer side of the canal curvature. canal transportation were measured at 9 measuring point with 1 mm interval. Statistical analysis among the types of Ni-Ti files was performed using Kruskal-Wallis test and Mann-Whitney U-test. The result was that ProFile maintain original canal configuration better than other engine driven Ni-Ti files in the canals above 3.0mm radius of curvature, and in the 1.5mm radius of curvature, most of Ni-Ti flies were deformed or separated during instrumentation.

Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area (Landsat TM 화상을 이용한 당진군 일원의 논면적 추정)

  • 홍석영;임상규;이규성;조인상;김길웅
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.5-15
    • /
    • 2001
  • For estimating paddy field area with Landsat TM images, two dates, May 31, 1991 (transplanting stage) and August 19, 1991 (heading stage) were selected by the data analysis of digital numbers considering rice cropping calendar. Four different estimating methods (1) rule-based classification method, (2) supervised classification(maximum likelihood), (3) unsupervised classification (ISODATA, No. of class:15), (4) unsupervised classification (ISODATA, No. of class:20) were examined. Paddy field area was estimated to 7291.19 ha by non-classification method. In comparison with topographical map (1:25,000), accuracy far paddy field area was 92%. A new image stacked by 10 layers, Landsat TM band 3,4,5, RVI, and wetness in May 31,1991 and August 19,1991 was made to estimate paddy field area by both supervised and unsupervised classification method. Paddy field was classified to 9100.98 ha by supervised classification. Error matrix showed 97.2% overall accuracy far training samples. Accuracy compared with topographical map was 95%. Unsupervised classifications by ISODATA using principal axis. Paddy field area by two different classification number of criteria were 6663.60 ha and 5704.56 ha and accuracy compared with topographical map was 87% and 82%. Irrespective of the estimating methods, paddy fields were discriminated very well by using two-date Landsat TM images in May 31,1991 (transplanting stage) and August 19,1991 (heading stage). Among estimation methods, rule-based classification method was the easiest to analyze and fast to process.

  • PDF

CROSS-SECTIONAL MORPHOLOGY AND MINIMUM CANAL WALL WIDTHS IN C-SHAPED ROOT OF MANDIBULAR MOLARS (C-shaped canal의 절단면 분석을 통한 근관형태의 변화와 근관과 치아외벽간의 최소거리 분석에 관한 연구)

  • Song, Byung-Chul;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • The C-shaped canal system is an anatomical variation mostly seen in mandibular second molars, although it can also occur in maxillary and other mandibular molars. The main anatomical feature of C-shaped canals is the presence of fins or web connecting the individual root canals. The complexity of C-shaped canals prevents these canals from being cleaned, shaped, and obturated effectively during root canal therapy, and sometimes it leads to an iatrogenic perforation from the extravagant preparation. The purpose of this study was to provide further knowledge of the anatomical configuration and the minimal thickness of dentinal wall according to the level of the root. Thirty extracted mandibular second molars with fused roots and longitudinal grooves on lingual or buccal surface of the root were collected from a native Korean population. The photo images and radiographs from buccal, lingual, apical direction were taken. After access cavity was prepared, teeth were placed in 5.25% sodium hypochlorite solution for 2 hours to dissolve the organic tissue of the root surface and from the root canal system. After bench dried and all the teeth were embedded in a self-curing resin. Each block was sectioned using a microtome (Accutom-50, Struers, Denmark) at interval of 1 mm. The sectioned surface photograph was taken using a digital camera (Coolpix 995, Nikon, Japan) connected to the microscope. 197 images were evaluated for canal configurations and the minimal thickness of dentinal wall between canal and external wall using 'Root Thickness Gauge Program' designed with Visual Basic. The results were as follows : 1. At the orifice level of all teeth, the most frequent observed configuration was Melton's Type C I (73%), however the patterns were changed to type C II and C III when the sections were observed at the apical third. On the other hand, the type C III was observed at the orifice level of only 2 teeth but this type could be seen at apical region of the rest of the teeth. 2. The C-shaped canal showed continuous and semi-colon shape at the orifice level, but at the apical portion of the canal there was high possibility of having 2 or 3 canals 3. Lingual wall was thinner than buccal wall at coronal, middle, apical thirds of root but there was no statistical differences.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities (영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석)

  • LEE, Jeong-Min;HAM, Geon-Woo;BAE, Kyoung-Ho;PARK, Hong-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.82-98
    • /
    • 2019
  • The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.

Application of Automated Microscopy Equipment for Rock Analog Material Experiments: Static Grain Growth and Simple Shear Deformation Experiments Using Norcamphor (유사물질 실험을 위한 자동화 현미경 실험 기기의 적용과 노캠퍼를 이용한 입자 성장 및 단순 전단 변형 실험의 예)

  • Ha, Changsu;Kim, Sungshil
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.233-245
    • /
    • 2021
  • Many studies on the microstructures in rocks have been conducted using experimental methods with various equipment as well as natural rock studies to see the development of microstructures and understand their mechanisms. Grain boundary migration of mineral aggregates in rocks could cause grain growth or grain size changes during metamorphism or deformation as one of the main recrystallization mechanisms. This study suggests improved ways regarding the analog material experiments with reformed equipment to see sequential observations of these grain boundary migration. It can be more efficient than the existing techniques and carry out an appropriate microstructure analysis. This reformed equipment was implemented to enable optical manipulation by mounting polarizing plates capable of rotating operation on a stereoscopic microscope and a deformation rig capable of experimenting with analog materials. The equipment can automatically control the temperature and strain rate of the deformation rig by microcontrollers and programming and can take digital photomicrographs with constant time intervals during the experiment to observe any microstructure changes. The composite images synthesized using images by rotated polarizing plates enable us to see more accurate grain boundaries. As a rock analog material, norcamphor(C7H10O) was used, which has similar birefringence to quartz. Static grain growth and simple shear deformation experiments were performed using the norcamphor to verify the effectiveness of the equipment. The static grain growth experiments showed the characteristics of typical grain growth behavior. The number of grains decreases and the average grain size increases over time. These case experiments also showed a clear difference between the growth curves with three temperature conditions. The result of the simple shear deformation experiment under the medium temperature-low strain rate showed no significant change in the average grain size but presented the increased elongation of grain shapes in the direction of about 53° regarding the direction perpendicular to the shearing direction as the shear strain increases over time. These microstructures are interpreted as both the plastic deformation and the internal recovery process in grains are balanced by the deformation under the given experimental conditions. These experiments using the reformed equipment represent the ability to sequentially observe changing the microstructure during experiments as desired in the tests with the analog material during the entire process.

Sea Fog Level Estimation based on Maritime Digital Image for Protection of Aids to Navigation (항로표지 보호를 위한 디지털 영상기반 해무 강도 측정 알고리즘)

  • Ryu, Eun-Ji;Lee, Hyo-Chan;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In line with future changes in the marine environment, Aids to Navigation has been used in various fields and their use is increasing. The term "Aids to Navigation" means an aid to navigation prescribed by Ordinance of the Ministry of Oceans and Fisheries which shows navigating ships the position and direction of the ships, position of obstacles, etc. through lights, shapes, colors, sound, radio waves, etc. Also now the use of Aids to Navigation is transforming into a means of identifying and recording the marine weather environment by mounting various sensors and cameras. However, Aids to Navigation are mainly lost due to collisions with ships, and in particular, safety accidents occur because of poor observation visibility due to sea fog. The inflow of sea fog poses risks to ports and sea transportation, and it is not easy to predict sea fog because of the large difference in the possibility of occurrence depending on time and region. In addition, it is difficult to manage individually due to the features of Aids to Navigation distributed throughout the sea. To solve this problem, this paper aims to identify the marine weather environment by estimating sea fog level approximately with images taken by cameras mounted on Aids to Navigation and to resolve safety accidents caused by weather. Instead of optical and temperature sensors that are difficult to install and expensive to measure sea fog level, sea fog level is measured through the use of general images of cameras mounted on Aids to Navigation. Furthermore, as a prior study for real-time sea fog level estimation in various seas, the sea fog level criteria are presented using the Haze Model and Dark Channel Prior. A specific threshold value is set in the image through Dark Channel Prior(DCP), and based on this, the number of pixels without sea fog is found in the entire image to estimate the sea fog level. Experimental results demonstrate the possibility of estimating the sea fog level using synthetic haze image dataset and real haze image dataset.

A Study on the Influence of Consumer Type on the Choice of Next-Generation Eco-Friendly Vehicle and Consumer Purchase Intention - Comparative Study on Japan and Korea - (소비자 유형이 차세대 친환경자동차선택속성과 소비자 구매의도에 미치는 영향에 관한 연구 - 한국 일본 비교연구 -)

  • Yim, Ki-Heung;Chong, Min-Young
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.133-146
    • /
    • 2017
  • In recent years, the development and market participation of major makers of next-generation eco-green vehicles has been accelerating. Consumer interest has also increased. Consumer characteristics, consumption type, characteristics of next-generation eco-friendly vehicles, and government policies on next eco-green vehicles. The results of this study are as follows. In Korea, there was no significant difference by gender, age, monthly average income, and consumer type. However, there was no significant difference in purchase intention by gender, age, and monthly income, Respectively. In the case of Japan, there was no significant difference by gender, age, monthly income, and consumer type. In Korea, on the other hand, images such as brand, color, and design have positive effects on eco-friendly vehicles. In the case of Japan, image and stability have a positive effect on consumers' purchasing behavior. Therefore, it is important for Japanese consumers to consider not only the image of purchasing an eco-friendly vehicles, but also the safety of the vehicles body, appear. In the case of Korea, the socio-environmental value-seeking type has a significant relationship with the purchasing intention. In the case of socio-environmental value-seeking type, the government's support policy such as carbon dioxide tax, direct support from the national or local governments, gasoline tax, Carbon tax and fuel related tax relief showed positive effects. In the case of Japan, the price-seeking type and the socio-environmental value-seeking type were found to have a significant relationship with the purchasing intention. Both the price-seeking type and the socio-environmental value-seeking type showed that the carbon dioxide tax, Direct support, gasoline tax, gasoline tax, and carbon tax, etc. have positive effects.