• Title/Summary/Keyword: diffusion pressures

Search Result 65, Processing Time 0.026 seconds

The Performance Analysis of Polymer Electrolyte Membrane Fuel Cells for Mobile Devices using CFD (CFD를 이용한 모바일기기용 고분자전해질 연료전지 성능해석)

  • Kim B.H.;Choi J.P.;Kang D.C.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.553-554
    • /
    • 2006
  • This paper presents the effects of different operating parameters on the performance of a proton exchange membrane (PEM) fuel cell by a three-dimensional computational fluid dynamics (CFD) model. The effects of different operating parameters on the performance of PEM fuel cell studied using pure hydrogen on the anode side and air on the cathode side. The various parameters are temperatures, pressures, humidification of the gas steams and various combinations of these parameters. In addition, geometrical and material parameters such as the gas diffusion layer (GDL) thickness and porosity as well as the ratio between the channel width and the land area were investigated.

  • PDF

Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures (초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

HOPF BIFURCATION PROPERTIES OF HOLLING TYPE PREDATOR-PREY SYSTEMS

  • Shin, Seong-A
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.329-342
    • /
    • 2008
  • There have been many experimental and observational evidences which indicate the predator response to prey density needs not always monotone increasing as in the classical predator-prey models in population dynamics. Holling type functional response depicts situations in which sufficiently large number of the prey species increases their ability to defend or disguise themselves from the predator. In this paper we investigated the stability and instability property for a Holling type predator-prey system of a generalized form. Hopf type bifurcation properties of the non-diffusive system and the diffusion effects on instability and bifurcation values are studied.

  • PDF

HIP DIFFUSION BONDING OF INTRICATE SHAPE COMPONENTS MADE OF LIGHT ALLOYS AND STEELS

  • Guelman, A.A.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.769-775
    • /
    • 2002
  • The results gained as part of the study on weldability of compositions from steels, aluminium, titanium alloys in various combinations including similar and dissimilar metal bonding variants with reference to solution of specific practical problems are presented in this work. It has been shown that in the case of HIP/DB carried out with direct interaction of bonding surfaces of the most dissimilar material combinations under study, formation of high-quality joints is not assured due to various reasons. That is why development of special bonding techniques was required. The bonding techniques developed and used for HIP/DB of dissimilar steels, "Steel-bronze", "Titanium-niobium"; "Titanium-steel" and other compositions under study ensured vacuum-tight microvoid-free joints strength of a which was equal to the milder parent metal, including those obtained at reduced welding pressures. Examples of new products manufactured by HIP/DB using the technologies developed are presented.

  • PDF

Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment (진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석)

  • Yoo, Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

Effect of Ni Content and Atmosphere Gas Pressure on the Carburizability Low-Carbon Alloy Steels During Fluidized-bed Carburizing (유동상 침탄시 저탄소 합금강의 침탄능에 미치는 Ni 함량 및 분위기 가스압력의 영향)

  • Roh, Y.S.;Kim, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.3
    • /
    • pp.5-12
    • /
    • 1990
  • This study has been conducted to establish the carburizing characteristics of low carbon alloy steels with varying amount of Ni element gas-carburized for 2 hours at $930^{\circ}C$ in an atmosphere of 94% $N_2$-6% $C_3H_8$ gas mixture with some changes in gas pressure passing through the diffusion plate in the fluidized-bed furnace. The results obtained from the experiment are as follows : (1) Optical micrograph has shown that the carburized layer consists of retained austenite and plate martensite and that retained austenite increases as the pressure of gas mixture passing through the diffusion plate as well as Ni content increase. (2) Chemical analysis has shown that carbon potential increases and carburizability is also improved due to a less degree of fluidization as the pressures of gas mixtures passing through the diffusion plate increase, resulting in, however, a severe formation of soot, and the gas pressure is necessarily regulated. (3) It has been revealed that carbon concentration hardness values at a given distance measured from the surface within the carburized case. Increase with increasing the pressure of gas mixtures passing through the diffusion plate and decrease with increasing Ni content. (4) The effective case depth has been shown to almost linearly increase as the pressure of gas mixtures passing through the diffusion plate is increased and to decrease with increasing Ni content.

  • PDF

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

Sorption and Diffusion of Carbon Dioxide in Polystyrene Membrane (폴리스티렌 막에서 $CO_2$의 수착과 확산)

  • Kim, You-Whan;Cho, Du-Hyun;Bae, Seong-Youl;Kumaawa, Hidehiro
    • Membrane Journal
    • /
    • v.3 no.2
    • /
    • pp.79-82
    • /
    • 1993
  • The sorption equilibria and permeabilities for $CO_2$ in a homogeneous membrane of polystyrene with the glass transition temperature of $95^{\circ}C$ were measured at a temperature of $60^{\circ}C$ and gas pressures up to 1.6 MPa and 2.5 MPa, respectively. The sorption isotherm had the form af dual-mode sorption model at low gas pressures, but became linear at pressures above 1.3 MPa. The linear portion of the isotherm extrapolated to the origin. The pressure dependence of the rnean permeability coefficient deviated upward from the dualsrhode mobility model prediction. It was found that the glass transition was brought out by the plasticization action of sotbed $CO_2$ at a gas pressure of 1.3 MPa from the sorption isotherm. And this result was consistent with an increase in the mean permeability coefficient with applied gas pressure.

  • PDF

Predictions of zinc selenide single crystal growth rate for the micro gravity experiments

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.226-232
    • /
    • 2004
  • One predicts the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration based on one dimensional advection-diffusion and two-dimensional diffusion-convection model. The present results show that for the ratios of partial pressures, s = 0.2 and 2.9, the growth rate increases with the temperature differences between the source and crystal. As the ratio of partial pressure approaches the stoichiometric value, s = 2 from s = 1.5 (zinc-deficient case: s < 2) and 2.9 (zinc-rich case: s > 2), the rate increases sharply. For the ranges from 1.5 to 1.999 (zinc-deficient case: s < 2) and from s = 9 to 2.9 (zinc-rich case: s > 2), the rate are slightly varied. From the viewpoint of the order of magnitude, the one-dimensional model for low vapor pressure system falls within the 2D predictions, which indicates the flow fields would be advective-diffusive. For the effects of gravitational accelerations on the rate, the gravitational constants are varied from 1 g to $10^{-6}$ g for $\Delta$T = 50 K and s = 1.5, the rates remain nearly constant, i.e., 211 mg/hr, which indicates Stefan flow is dominant over convection.

The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron (플라즈마 침질탄화처리된 순철의 화합물층 특성)

  • Cho, H.S.;Lee, S.Y.;Bell, T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF