• Title/Summary/Keyword: diffusion mechanism

Search Result 718, Processing Time 0.029 seconds

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Modeling of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정 모델링)

  • Nguyen, Huu Hieu;Lee, Sung Taek;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.560-564
    • /
    • 2011
  • The objective of this study is to propose a mathematical model for a pervaporation process for concentrating hydrogen peroxide. The process was developed by NASA, which consists of a shell and membrane tubes, where a liquid hydrogen peroxide solution flows in the shell, and a sweep gas flows in the tubes countercurrent to each other. The liquid retentate is concentrated as more water molecules permeate and evaporate through the membrane than hydrogen peroxide. For this process, a mathematical model has been developed in the form of a system of nonlinear partial differential algebraic equations based on a sorption-diffusion mechanism for permeation, an Arrhenius relationship for the temperature dependency of the permeate flux, and mass and momentum balances for the liquid concentrations and flows in the membrane module. The dynamic behavior of the concentration of hydrogen peroxide in the retentate side has been simulated by solving a simplified version of the proposed model, and the result is compared with the experimental data reported in the NASA patent.

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

  • Nguyen, Hung Tai;Tran, Thi Lan;Nguyen, Dang Thanh;Shin, Eui-Chol;Kang, Soon-Hyung;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.244-260
    • /
    • 2018
  • Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.

Antibacterial activity of Tonghyeonipal-dan against Methicillin-resistant Staphylococcus aureus (통현이팔단 에탄올 추출물의 Methicillin Resistant Staphylococcus aureus에 대한 항균활성)

  • KIM, In-Won;KANG, Ok-Hwa;KONG, Ryong;KWON, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Objectives : Methicillin-resistantStaphylococcus aureus(MRSA) is a human pathogen. New antibacterial agents are needed to treat MRSA-related infections. This study investigated the antibacterial activity of EtOH 70% extracts ofTonghyeonipal-dan(THD) which prescription is composed of oriental medicine against MRSA.Methods : The antibacterial activity of THD was evaluated against MRSA strains by using the Disc diffusion method, broth microdilution method, Checkerboard dilution test, and Time-kill test; its mechanism of action was investigated by bacteriolysis, detergent or ATPase inhibitors were used.Results : The minimum inhibitory concentration (MIC) of THD is 1,000~2,000 μg/mL against MRSA. In the checkerboard dilution test, fractional inhibitory concentration index (FICI) of THD in combination with antibiotics indicated synergy or partial synergism againstS. aureus. Furthermore, a time-kill assay showed that the growth of the tasted bacteria was considerably inhibited after 24 h of treatment with the combination of THD with selected antibiotics. For measurement of cell membrane permeability, THD 500 μg/mL along with concentration of Triton X-100 (TX) and Tris-(hydroxymethyl) aminomethane (TRIS) were used. In the other hand, N,N-dicyclohexylcarbodimide (DCCD) and Sodium azide (NaN3) were used as an inhibitor of ATPase. TX, TRIS, DCCD and NaN3 cooperation againstS. aureusshowed synergistic action.Conclusions : Accordingly, antimicrobial activity of THD was affected by cell membrane and inhibitor of ATPase were assessed. These results suggest that THD has antibacterial activity, and that THD extract offers great potential as a natural antibiotic against MRSA.

Synthesis and Characterization of Electro-Active Poly(2-acrylamido-2-methylpropanesulfonic acid) Polymer Gel Actuator (전기활성 Poly(2-acrylamido-2-methylpropanesulfonic acid) 고분자 겔 구동기의 합성 및 특성분석)

  • 송영진;심우선;김홍경;김학길;최혁렬;김훈모;전재욱;이영관;남재도
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.736-743
    • /
    • 2001
  • An electro- active polymer (EAP) (poly(2-acrylamido-2- methyl propane sulfonic acid), PAMPS) gel crosslinked with N,N-methylenebisacrylamide (MBAA) has been prepared by free radical polymerization in aqueous solution with potassium persulfate as initiator PAMPS gel was swollen in surfactant solution to substitute surfactant for using as actuator. PAMPS gel showed a large movement in the surfactant solution by electric field. PAMPS gel showed the reversible binding and fast response rate. Bending mechanism of gel is related to the cooperative process of hydrophobic interaction, swelling-deswelling of gel and the electrostatic attraction between anode (+) and the anions of PAMPS gel. The response rate of PAMPS gel was increased as the applied potential and the degree of cross-linkage were increased. The response rate was increased as the bending cycle was repeated, but it was decreased with increasing the gel thickness.

  • PDF

PAHs Formation Characteristics and Fullerenes $(C_{60},\;C_{70})$ Synthesis in a Low-Pressure $C_6H_6/Ar/O_2$ Flame (저압 $C_6H_6/Ar/O_2$ 화염에서 PAHs 생성 특성 및 플러렌$(C_{60},\;C_{70})$ 합성에 대한 연구)

  • Lee, G.W.;Kim, Y.W.;Hwang, J.;Jrung, J.;Choi, M.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.36-44
    • /
    • 2002
  • Carbon molecules with closed-cage structures are called fullerenes $(C_{60},\;C_{70})$, whose applications include super-conductors, sensors, catalysts, optical and electronic device, polymer composites, and biological and medical materials. The synthesis of fullerenes has been recently studied with low-pressure benzene/argon/oxygen flames. The formation of fullerene is known as molecular weight growth processes of PAHs (polycyclic aromatic hydrocarbon). This study presents results of PAHs and fullerene measurements performed in a low-pressure benzene/argon/oxygen normal co-flow laminar diffusion flame. Through the central tube of the burner, benzene vapors carried by argon are injected. The benzene vapors are made in a temperature-controlled bubbler. The burner is located in a chamber, equipped with a sampling system for direct collection of condensable species from the flame, and exhausted to a vacuum pump. Samples of the condensable are analyzed by HPLC (High Performance Liquid Chromatography) to determine the yields of PAHs and fullerene. Also, we computed mole fraction of fullerene and PAHs in a nearly sooting low pressure premixed, one-dimensional benzene/argon/oxygen flame (equivalence ratio ${\Phi}=2.4$, pressure=5.33kPa). The object of computation was to investigate the formation mechanism of fullerenes and PAHs. The computations were performed with CHEMKIN/PREMIX. As a result of this study, fullerenes were synthesized in a low pressure (20torr) $C_6H_6/Ar/O_2$ flames and the highest concentration of fullerene was detected just above the visible surface of a flame.

  • PDF

Change Of the Properties and the $Cr_3C_2$ Phase by Sintering Atmospere on $Ti(C, N)-Cr_3C_2$ Ceramics ($Ti(C, N)-Cr_3C_2$, 소결체의 오결분위기에 따른 물성과 $Cr_3C_2$ 상변화)

  • 김무경;이재의
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • The effect of sintering atmosphere on the final properties and phase change of Ti (C, N) Cr3c2 ceramics was investigated. In the case of sintering in vacuum and N2 atmosphere, densely packed sintered body was obtained. In Ar atmosphere, however, densification was much decreased compared to sintering in vacuum and Na. XRD analysis showed that in vacuum atmosphere Cr3c2 phase was changed to Cr7c3 Phase whereas in N2 and Ar atmosphere phase change was not occurred. That is, for vacuum sintering, the formation of defects in Ti(C, N) structure occurred through de-nitridation process, and it promotes the diffusion of C in Cr3c2 and raises the densification effects. But in the case of N2 atmosphere, densification phenomenon was considered to be due to sintering mechanism that enabled formation of free carbon and removal of oxygen by free carbon and existence of carbon in the grain boundary.

  • PDF

NMR peak assignment for the elucidation of the solution structure of T4 Endonuclease V

  • Im, Hoo-Kang;Hyungmi Lihm;Yu, Jun-Suk;Lee, Bong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.183-183
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential stens: linear diffusion along dsDNA, pyrimidine dimer-specific binding,l pyrimidine dimer-DNA glycosylase activity, and Af lyase activity. Although crystal structure is known for this enzyme, solution structure has not been yet known. In order to elucidate the solution structure of this enzyme NMR spectroscopy was used. As a basis for the NMR peak assignment of the protein, HSQC spectrum was obtained on the uniformly $\^$15/N-labeled T4 endonuclease V. Each amide peak of the spectrum were classified according to amino acid spin systems by interpreting the spectrum of $\^$15/N amino acid-specific labeled T4 endonuclease V. The assignment was mainly obtained from three-dimensional NMR spectra such as 3D NOESY-HMQC, 3D TOCSY-HMQC. These experiments were carried out will uniformly $\^$15/N-labeled sample. In order to assign tile resonance of backbon atom, triple-resonance theree-dimensional NMR experiments were also performed using double labeled($\^$15/N$\^$13/C) sample. 3D HNCA, HN(CO)CA, HNCO, HN(CA)HA spectra were recorded for this purpose. The results of assignments were used to interpret the interaction of this enzyme with DNA. HSQC spectrum was obtained for T4 endonuclease V with specific $\^$15/N-labeled amino acids that have been known for important residue in catalysis. By comparing the spectrum of enzyme*DNA complex with that of the enzyme, we could confirm the important role of some residues of Thr, Arg, Tyr in activity. The results of assignments were also used to predict the secondary structure by chemical shift index (CSI).

  • PDF

The Study on niche creation mechanism of drama contents based on lead users - Focussing on drama Damo fandom community (드라마 콘텐츠의 리드 유저 기반 틈새 창출(niche creation) 메커니즘 연구 - 드라마 다모(茶母) 팬덤 커뮤니티를 중심으로)

  • Chang, Yong Ho;Kong, Byoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2121-2130
    • /
    • 2013
  • Based on the case study methods, the study analyzes that the countless UCC Cloud cloud is the niche creation by the lead users make process. This research show as follows. First, The Drama lovers and fan fiction writers are not only drama consumers but UCC creators/producers. By the process that the UCC and fan fiction is tailored to meet the needs of their users create fan fiction in fandom community, they create an entirely different niche from original drama. Second, the flow(drama consumption/evaluation, viewers needs/adaption, the user's creation/production) which community's creative users make sequentially coevolutes with the flow(drama information offer, intentionally supply/diffusion, derivatives production) of media companies. Third, the drama fandom community activities which is non-commercial activities form the drama ecosystem with a new paradigm, as well as form a virtuous cycle inked to the market continuously beyond fun, play, empathy.

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF