• Title/Summary/Keyword: diffusion layer

Search Result 1,410, Processing Time 0.024 seconds

Effect of Bonding Temperature and Bonding Pressure on Deformation and Tensile Properties of Diffusion Bonded Joint of STS304 Compact Heat Exchanger (STS304 콤팩트 열교환기 고상확산접합부의 접합부 변형과 인장성질에 미치는 접합온도 및 접합압력의 영향)

  • Jeon, Ae-Jeong;Yoon, Tae-Jin;Kim, Sang-Ho;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.46-54
    • /
    • 2014
  • In this study, the effect of bonding temperature and bonding pressure on deformation and tensile properties of diffusion bonded joint of STS304 compact heat exchanger was investigated. The diffusion bonds were prepared at 700, 800 and $900^{\circ}C$ for 30, 60 and 90 min in pressure of 3, 5, and 7 MPa under high vacuum condition. The height deformation of joint decreased and the width deformation of joint increased with increasing bonding pressure at $900^{\circ}C$. The ratio of non-bonded layer and void observed in the joint decreased with increasing bonding temperature and bonding pressure. Three types of the fracture surface were observed after tensile test. The non-bonded layer was observed in diffusion bonded joint preformed at $700^{\circ}C$, the non-bonded layer and void were observed at $800^{\circ}C$. On the other hand, the ductile fracture occurred in diffusion bonded joint preformed at $900^{\circ}C$. Tensile load of joint bonded at $800^{\circ}C$ was proportional to length of bonded layer and tensile load of joint bonded at $900^{\circ}C$ was proportional to minimum width of pattern. The tensile strength of joint was same as base metal.

A Study on the Effect of the $CO_2$ Gas on the Growth Mechanism of the Nitrocarburized Layer (연질화층의 성장기구에 미치는 $CO_2$가스의 영향에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.25
    • /
    • pp.175-184
    • /
    • 1995
  • Mechanical properties of the gas nitrocarburized product depend on the surface compound layer and the diffusion zone formed. The compound layer improves the wear resistance, and the corrosion resistance. Though phase composition, pore layer and growth rate of the compound layer varies according to the treatment time, temperature and the kind of the steel substrate, they are strongly influenced by the environmental gas composition. In the current study, the growth behavior of the compound layer and diffusion zone of the carbon steel and the alloy steel upon nitrocarburizing treatment at $570^{\circ}C$, and the phase composition and the variation in the growth rate of the compound layer according to the variation of the gas environment which was the medium of the nitriding and carburizing reaction were investigated.

  • PDF

Role of Buffer Layer in Ba-Ferrite/α-Al2O3/SiO2 Magnetic Thin Films (Ba-페라이트/α-Al2O3/SiO2 자성박막에서 버퍼층의 역할)

  • Cho, Tae-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.283-286
    • /
    • 2006
  • We have studied the role of ${\alpha}-Al_{2}O_{3}$ buffer layer as a diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite $(1900-{\AA}-thick)/SiO_{2}$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_{2}O_{3}$ buffer layer ($110-{\AA}-thick$) in the interface of Ba-ferrite/$SiO_{2}$ thin film. During the annealing of Ba-ferrite/${\alpha}-Al_{2}O_{3}/SiO_{2}$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The magnetic properties, such as saturation magnetization and intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_{2}O_{3}$ buffer layer. Our study suggests that the ${\alpha}-Al_{2}O_{3}$ buffer layer act as a useful interfacial diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films.

Side Channel Analysis with Low Complexity in the Diffusion Layer of Block Cipher Algorithm SEED (SEED 블록 암호 알고리즘 확산계층에서 낮은 복잡도를 갖는 부채널 분석)

  • Won, Yoo-Seung;Park, Aesun;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.993-1000
    • /
    • 2017
  • When the availability of embedded device is considered, combined countermeasure such as first-order masking and hiding countermeasures is quite attractive because the security and efficiency can be provided at the same time. Especially, combined countermeasure can be applied to the confusion and diffusion layers of the first and last rounds in order to provide the efficiency. Also, the middle rounds only employs first-order masking countermeasure or no countermeasure. In this paper, we suggest a novel side channel analysis with low complexity in the output of diffusion layer. In general, the attack target cannot be set to the output of diffusion layer owing to the high complexity. When the diffusion layer of block cipher is composed of AND operations, we show that the attack complexity can be reduced. Here, we consider that the main algorithm is SEED. Then, the attack complexity with $2^{32}$ can be reduced by $2^{16}$ according to the fact that the correlation between the combination of S-box outputs and that of the outputs of diffusion layer. Moreover, compared to the fact that the main target is the output of S-box in general, we demonstrate that the required number of traces can be reduced by 43~98% in terms of simulated traces. Additionally, we show that only 8,000 traces are enough to retrieve the correct key by suggested scheme, although it fails to reveal the correct key when performing the general approach on 100,000 traces in realistic device.

Molecular Dynamics Simulations of the Diffusion of Bimetallic Nanoclusters Supported on Graphite (분자동역학을 이용한 흑연 위에서의 2종 합금 나노입자의 확산 거동 연구)

  • Park, Joon Woo;Lee, Ju Seong;Min, Chan Ho;Lee, Hyun Seok;Ryu, Ji Hoon;Seo, Dong Hwa;Lee, Hyuck Mo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.461-465
    • /
    • 2009
  • We study the diffusion of Ag based bimetallic nanoclusters supported on graphite. Using a molecular dynamics simulation, we reveal that the Ag clusters show rapid diffusion because of their hexagonal bottom layer. In order to decrease the rate of diffusion, we added Pt and Ni to distort the structure of the alloy cluster (i.e., the alloying method). We expected Pt to provide a stronger force on Ag atoms, and Ni to shorten the bond length and thereby change the structure of Ag cluster. However, the attempt was unsuccessful, because Pt and Ni atoms formed cores inside the Ag clusters. We therefore designed a collision system where large Ag clusters collide with small Pt or Ni clusters. Upon collision with Pt clusters, the diffusion showed little change, because Pt atoms are substituted at the Ag atomic site and form a perfectly ordered structure. The collision with Ni, however, deforms the bottom layer as well as the overall cluster structure and decreases diffusion. This outcome appoints toward the possibility of further application to the manufacture of durable nanocatalysts.

Effect of ITO thin films characterization by barrier layers$(SiO_2\;and\;Al_2O_3)$ on soda lime glass substrate (Soda lime glass기판위의 barrier층$(SiO_2,\;Al_2O_3)$이 ITO박막특성에 미치는 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;An, Yong-Tae;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.292-292
    • /
    • 2007
  • To apply PDP panel, Soda lime glass(SLG) is cheeper than Non-alkali glass and PD-200 glass but has problems such as low strain temperature and ion diffusion by alkali metal oxide. In this paper suggest the methode that prohibits ion diffusion by deposing barrier layer on SLG. Indium thin oxide(ITO) thin films and barrier layers were prepared on SLG substrate by Rf-magnetron sputtering. These films show a high electrical resistivity and rough uniformity as compared with PD-200 glass due to the alkali ion from the SLG on diffuse to the ITO film by the heat treatment. However these properties can be improved by introducing a barrier layer of $SiO_2\;or\;Al_2O_3$ between ITO film and SLG substrate. The characteristics of films were examined by the 4-point probe, SEM, UV-VIS spectrometer, and X-ray diffraction. GDS analysis confirmed that barrier layer inhibited Na and Ka ion diffusion from SLG. Especially ITO films deposited on the $Al_2O_3$ barrier layer had higher properties than those deposited on the $SiO_2$ barrier layer.

  • PDF

optical Simulation on EUV Reflectivity of Mo/Si Multilayer Structure (Mo/Si 다층박막의 극자외선 반사도에 대한 전산모사)

  • 이영태;강인용;정용재;이승윤;허성민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.19-24
    • /
    • 2001
  • The effect of thickness variation and inter-diffusion layer on the reflectivity of Mo/Si multilayer has been investigated. The reflectivity of the imperfect Mo/Si multilayer with thickness variation of 28% was found to be lowered by 10.8% compared to that of ideal Mo/Si multilayers with 40-periods. When the inter-diffusion layer is taken into account, the reflectivity is decreased by 4.7% additionally. We also fecund that the reflectivity continued to increase until the 25th-layer but it showed irregular tendencies about increment and decrement from the 26th-layer of Mo/Si multilayer structures.

  • PDF

Thin-layer Drying Characteristics of Rapeseed

  • Lee, Hyo-Jai;Lee, Seung-Kee;Kim, Hoon;Kim, Woong;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.232-239
    • /
    • 2016
  • Purpose: The aims of this study were to define the drying characteristics of rapeseed and to determine the optimum thin-layer drying model for rapeseed by considering the effects of drying temperature and relative humidity. Methods: The thin-layer drying experiments were conducted at different combinations of drying air temperature levels of 40, 50, and $60^{\circ}C$ and relative humidity levels of 30, 45, and 60%, on both of which drying rate depends. The drying rate increased with increasing air temperature as well as decreasing relative humidity. The 13 models were fitted to the experimental data. Results: From the results of the regression analysis for empirical constants of the Page model, the values of $R^2$ were the highest (ranging from 0.9924 to 0.9966) and the values of RMSE were the lowest (ranging from 0.0169 to 0.0296). Conclusions: For all drying conditions considered, the Page model was determined to be the most suitable model for describing the thin-layer drying of rapeseed (P-value < 0.01). The moisture diffusion coefficients were calculated using the moisture diffusion equation for a spherical shape, based on Fick's second law.

A Study for Ni-Al based Intermetallics Coating onto Aluminum Substrate by Induction Heating (고주파 유도가열을 통한 알루미늄 기판재위 Ni-Al계 금속간화합물의 연소합성코팅에 관한 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.56-61
    • /
    • 2012
  • In order to investigate the possibility of Ni-Al based intermetallics coating onto aluminum substrate, the coating process for induction heating has been evaluated by microscopically analyzing the intermetallic layers coated at temperatures lower than the melting temperature of aluminum. The coating layers were divided into two parts with different microstructure along the depth. Hard $NiAl_3$ layer was found at lower parts of the coatings near the interface with aluminum substrate. This layer was formed by the diffusion of aluminum atoms from the substrate into the coating layer across the interface during the induction heating. Meanwhile, at the upper parts of the coating near the surface, a large amount of un-reacted Ni was still remained and surrounded by several Ni-Al based intermetallic compounds, such as $Ni_3Al$, NiAl and $Ni_2Al_3$ formed by the lattice diffusion.

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics (CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가)

  • Kim B.H.;Choi J.P.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF