• Title/Summary/Keyword: diffusion equalization

Search Result 3, Processing Time 0.021 seconds

THE METHOD OF NONFLAT TIME EVOLUTION (MONTE) IN PDE-BASED IMAGE RESTORATION

  • Cha, Youngjoon;Kim, Seongjai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.961-971
    • /
    • 2012
  • This article is concerned with effective numerical techniques for partial differential equation (PDE)-based image restoration. Numerical realizations of most PDE-based denoising models show a common drawback: loss of fine structures. In order to overcome the drawback, the article introduces a new time-stepping procedure, called the method of nonflat time evolution (MONTE), in which the timestep size is determined based on local image characteristics such as the curvature or the diffusion magnitude. The MONTE provides PDE-based restoration models with an effective mechanism for the equalization of the net diffusion over a wide range of image frequency components. It can be easily applied to diverse evolutionary PDE-based restoration models and their spatial and temporal discretizations. It has been numerically verified that the MONTE results in a significant reduction in numerical dissipation and preserves fine structures such as edges and textures satisfactorily, while it removes the noise with an improved efficiency. Various numerical results are shown to confirm the claim.

Contrast enhancement of color images using modified error diffusion (변형된 오차확산을 이용한 컬러 영상의 콘트라스트 개선)

  • Lee, Ji-Won;Park, Rae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.651-661
    • /
    • 2008
  • This paper proposes a novel contrast enhancement (CE) algorithm for color images using the modified error diffusion (ED). After conventional color histogram equalization (HE), artifacts such as false contours are produced in the contrast enhanced image. The proposed CE algorithm using the modified ED consists of two parts: CE and ED. In the first part, a low-contrast input image is enhanced by the conventional HE method. In the second part, we use the modified ED algorithm. The inputs of the second part are the average and scaled difference images of the original color input image and the HE image, in which the scaled color difference image is diffused by the ED algorithm. In the proposed algorithm, the modified ED algorithm reduces the artifacts produced in the HE image, and increases the number of color levels. Computer simulations with a number of low-contrast color images show the effectiveness of the proposed CE method in terms of the visual quality as well as the probability mass function. It can be used as a post-processing for CE with simultaneous artifact reduction in various display devices.

Models of Wastewater Treatment by Rotating Discs (회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究))

  • Chung, Tai Hak;Park, Chung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 1982
  • A model of substrate removal by rotating discs has been developed for a better understanding of the process, and the performance of the system has been evaluated under steady and unsteady state. The model was constructed based upon mass transfer of the substrate from the bulk solution to the biofilm and a simultaneous removal of the substrate by the biomass. The model is composed of a few sets of differential equations representing mass balance within the elements of a liquid film and a biofilm, and in the bulk solution. Substrate removal efficiency of the process is largely dependent on a diffusion coefficient of the substrate within the biofilm and a maximum rate of substrate removal of the biomass. The efficiency is affected to a greater extent when the substrate concentration is low and the maximum substrate removal rate is high. The efficiency increases proportionally with increasing film depth when the biofilm is shallow, however, the rate of increase gradually decreases with an increase of the film depth. As the film reaches a limiting depth, the efficiency remains constant. Unlike the steady state, the effluent quality is affected by the tank volume under dynamic state. Increasing tank volume decreases peak concentration of the effluent under peak loading. Additional tank volume provides a buffer capacitya.gainst a peak loading and the holding tank behaves like an equalization tank.

  • PDF