• Title/Summary/Keyword: diffuse reflectance

Search Result 129, Processing Time 0.023 seconds

Fabrication of M-Doped TiO2 (M=Co, Cr, Fe) : Its Electronic Band Structure-(1) (M-Doped TiO2 (M=Co, Cr, Fe)의 제조 : 전자 밴드구조-(1))

  • Bae, Sang-Won;Kim, Hyun-Gyu;Ji, Sang-Min;Jang, Jum-Suk;Jeong, Euh-Duck;Hong, Suk-Joon;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.22-27
    • /
    • 2006
  • The electronic band structures of Metal-doped titanium dioxide, M-doped $TiO_2$ (M=Co, Cr, Fe), have been studied by using XRD, UV-vis diffuse reflectance spectrometer and FP-LAPW (Full-Potential Linearized Augmented-Plane-Wave) method. The UV-vis of M-doped $TiO_2$ (M=Co, Cr, Fe) showed two absorption edges; the main edge due to the titanium dioxide at 387 nm and a shoulder due to the doped metals at around 560 nm. The band gap energies of Co, Cr and Fe-doped $TiO_2$ calculated by FP-LAPW method were 2.6, 2.0, and 2.5 eV, respectively. The theoretically calculated band gap energy of $TiO_2$ by using FP-LAPW method was the same as experimental results. FP-LAPW method will be useful for fabrication and development of photo catalysts working under visible light.

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan;Nguyen, Hoang Phuc;Kim, Tae-Ho;Lee, Soo Wohn
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

The Effect of Alkali Metal Ions (Na, K) on NH3-SCR Response of V/W/TiO2 (알칼리 금속 이온(Na, K)이 V/W/TiO2의 NH3-SCR 반응인자에 미치는 영향)

  • Yeo, Jonghyeon;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.560-567
    • /
    • 2020
  • In this study, we investigated that the effect of alkali metals [Na(Sodium) and K(Potassium)], known as representative deactivating substances among exhaust gases of various industrial processes, on the NH3-SCR (selective catalytic reduction) reaction of V/W/TiO2 catalysts. NO, NH3-TPD (temperature programmed desorption), DRIFT (diffuse reflectance infrared fourier transform spectroscopy analysis), and H2-TPR analysis were performed to determine the cause of the decrease in activity. As a result, each alkali metal acts as a catalyst poisoning, reducing the amount of NH3 adsorption, and Na and K reduce the SCR reaction by reducing the L and B acid points that contribute to the reaction activity of the catalyst. Through the H2-TPR analysis, the alkali metal is considered to be the cause of the decrease in activity because the reduction temperature rises to a high temperature by affecting the reduction temperature of V-O-V (bridge oxygen bond) and V=O (terminal bond).

Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes

  • Jiang, Yinhua;Luo, Yingying;Lu, Ziyang;Huo, Pengwei;Xing, Weinan;He, Ming;Li, Jiqin;Yan, Yongsheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.76-82
    • /
    • 2014
  • 1-Methylimidazole-2-thiol, as a kind of mercaptans, is a typical organic pollutant which has not been efficiently removed. In this study, titanium dioxide ($TiO_2$) photocatalyst based on magnetic multi-walled carbon nanotubes (MWCNTs) was synthesized via hydrothermal and sol-gel methods. The as-prepared photocatalyst was extensively characterized by X-ray diffraction (XRD), X-ray energy diffraction spectrum (EDS), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectra, UV-Vis diffuse reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM). This photocatalyst of $TiO_2$/$Fe_3O_4$/MWCNTs was proved to exhibit high photocatalytic efficiency and the photodegradation rate could reach nearly 82.7% for the degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation. In addition, the results demonstrated that inorganic ions had a negative impact on photodegradation of 1-methylimidazole-2-thiol to varying degrees. Moreover, pH had a great and complex effect on photocatalytic degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation.

AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance

  • Liu, Chunping;Lin, Haili;Gao, Shanmin;Yin, Ping;Guo, Lei;Huang, Baibiao;Dai, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.441-447
    • /
    • 2014
  • $AgI/AgCl/H_2WO_4$ double heterojunctions photocatalyst was prepared via deposition-precipitation followed by ion exchange method. The structure, crystallinity, morphology, chemical content and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL). The photocatalytic activity of the $AgI/AgCl/H_2WO_4$ was evaluated by degrading methyl orange (MO) under visible light irradiation (${\lambda}$ > 400 nm). The double heterojunctions photocatalyst displayed more efficient photocatalytic activity than pure AgI, AgCl, $H_2WO_4$ and AgCl/$H_2WO_4$. Based on the reactive species and energy band structure, the enhanced photocatalytic activity mechanism of $AgI/AgCl/H_2WO_4$ was discussed in detail. The improved photocatalytic performance of $AgI/AgCl/H_2WO_4$ double heterojunctions could be ascribed to the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs, which was in close relation with the $AgI/AgCl/H_2WO_4$ heterojunctions formed between AgI, AgCl and $H_2WO_4$.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Image based Shading Techniques for Surfaces with Irregular and Complex Textures Formed by Heterogeneous Materials (이종물질에 의해 복잡한 불규칙 무늬가 형성된 물체 표면의 영상 기반 셰이딩 기법)

  • Lee, Joo-Rim;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper we present a shading technique for realistic rendering of the surfaces with irregular and complex textures using a single photograph. So far, most works have been using many photographs or special photographing equipment to render the surfaces with irregular and complex textures as well as dividing texture regions manually. We present an automatic selection method of the region segmentation techniques according to properties of materials. As our technique produces a reflectance model and the approximated Bidirectional Reflection Distribution Function(BRDF) parameters, it allows the recovery of the photometric properties of diffuse, specular, isotropic or anisotropic textured objects. Also it make it possible to present several synthetic images with novel lighting conditions and views.

Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light

  • Meng, Ze-Da;Zhu, Lei;Ghosh, Trisha;Park, Chong-Yeon;Ullah, Kefayat;Nikam, Vikram;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3761-3766
    • /
    • 2012
  • $Ag_2Se$-Graphene/$TiO_2$ composite was synthesized by a facile sonochemical method. The as-prepared products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometer. During the reaction, both of the reduction of graphene oxide and loading of $Ag_2Se$ and $TiO_2$ particles were achieved. The as-prepared $Ag_2Se$-Graphene/$TiO_2$ composites possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously. Hence, in the photodegradation of rhodamine B (Rh.B), a significant enhancement in the reaction rate was observed with $Ag_2Se$-Graphene/$TiO_2$ composites, compared to the pure $TiO_2$. The high activity can be attributed to the synergetic effects of high charge mobility, and red shift in absorption edge of $Ag_2Se$-Graphene/$TiO_2$ composites.

Synthesis of Cd1-xZnxS/K4Nb6O17 Composite and its Photocatalytic Activity for Hydrogen Production

  • Liang, Yinghua;Shao, Meiyi;Liu, Li;Hu, Jinshan;Cui, Wenquan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1182-1190
    • /
    • 2014
  • $Cd_{1-x}Zn_xS$-sensitized $K_4Nb_6O_{17}$ composite photocatalysts (designated $Cd_{1-x}Zn_xS/K_4Nb_6O_{17}$) were prepared via a simple deposition-precipitation method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), $N_2$ sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence measurements (PL), and X-ray photoelectron spectroscopy (XPS). The $Cd_{0.8}Zn_{0.2}S$ particles were scattered on the surface of $K_4Nb_6O_{17}$, and had a relatively uniform size distribution around 50 nm. The absorption edge of $K_4Nb_6O_{17}$ was shifted to the visible light region and the recombination of photo-generated electrons and holes suppressed after $Cd_{0.8}Zn_{0.2}S$ loading. The $Cd_{0.8}Zn_{0.2}S$(25 wt %)/$K_4Nb_6O_{17}$ composite possessed the highest photocatalytic activity for hydrogen production under visible light irradiation, evolving 8.278 mmol/g in 3 h. Recyclability tests were performed, and the composite photocatalysts were found to be fairly stable. The mechanism of charge separation between the photogenerated electrons and holes at the $Cd_{0.8}Zn_{0.2}S/K_4Nb_6O_{17}$ composite was discussed.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.