• Title/Summary/Keyword: diffuse pollution loading

Search Result 7, Processing Time 0.02 seconds

Characterization of Combined Sewer Overflows from a Small Urban Watershed and Determination of Optimum Detention Volume (소규모 도시유역 합류식 하수관거 월류수 특성화 및 최적 저류지 용량 결정)

  • Jo, Deokjun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.314-320
    • /
    • 2006
  • Diffuse pollution from an urban area contributes to the significant pollution loading to a receiving water body. In this paper, rainfall runoffs from an urban basin with combined sewer systems located in the city of Daejeon were monitored to measure the rainfall runoff discharge rates and pollutant concentrations. Strong first flush effects were observed for all monitored rainfall runoffs. The first flush effects were closely related to rainfall intensity, while suspended solids were closely related to pollutant constituents. The observed averaged Event Mean Concentrations (EMCs) of Combined Sewer Overflows (CSOs) were 536.1 mg SS/L, 467.7 mg CODcr/L, 142.7 mg BOD/L, 16.5 mg TN/L, and 13.5 mg TP/L. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on suspended solid concentration. In this study, retainment of the first flush equivalent to 5mm of precipitation could reduce diffuse pollution loading induced by CSOs to a receiving water body by up to 80% of suspended solid loading.

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Estimation of BOD Loading of Diffuse Pollution from Agricultural-Forestry Watersheds (농지-임야 유역의 비점원 발생 BOD 부하의 추정)

  • Kim, Geonha;Kwon, Sehyug
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Forestry and agricultural land uses constitute 85% of Korea and these land uses are typically mixed in many watersheds. Biological Oxygen Demand (BOD) concentration is a primary factor for managing water qualities of the water resources in Korea. BOD loadings from diffuse sources, however, not well monitored yet. This study aims to assess BOD loadings from diffuse sources and their affecting factors to conserve quality of water resources. Event Mean Concentration (EMC) of BOD was calculated based on the monitoring data of forty rainfall events at four agricultural-forestry watersheds. Exceedence cumulative probability of BOD EMCs were plotted to show agricultural activities in a watershed impacts on the magnitude of EMCs. Prediction equation for each rainfall event was proposed to estimate BOD EMCs: $EMC_{BOD}(mg/L)=EXP(0.413+0.0000001157{\times}$(discharged runoff volume in $m^3$)+0.018${\times}$(ratio of agricultural land use to total watershed area).

Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin (한강수계 비점오염원 저감시설의 생애주기비용 평가)

  • Lee, Soyoung;Maniquiz-Redillas, Marla C.;Lee, Jeong Yong;Mun, Hyunsaing;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.448-455
    • /
    • 2016
  • Diffuse pollution management in Korea initiated by the Ministry of Environment (MOE) resulted to the construction of pilot facilities termed Best Management Practices (BMPs). Twelve BMPs installed for the diffuse pollution management in the Kyung-An Stream were monitored since 2006. Data on the mass loading, removal efficiency, maintenance activities, etc. were gathered and utilized to conduct the evaluation of long-term performance of BMPs. The financial data such as actual construction, design and maintenance cost were also collected to evaluate the lifecycle cost (LCC) of BMPs. In this study, most of the maintenance activity was focused in the aesthetic maintenance that resulted to the annual maintenance cost of the four BMP types was closely similar ranging from 8,483 $/yr for retention pond to 8,888 $/yr infiltration system. The highest LCC were observed in constructed wetland ($418,324) while vegetated system had the lowest LCC ($210,418). LCC of BMPs was not so high as compared with the conventional treatment facility and sewage treatment plant. On the other hand, the relationship of removal efficiency on unit cost for TSS and TN was significant. This study will be used to design the cost effective BMP for diffuse pollution management and become models for LCC analysis.

Prediction of water quality in estuarine reservoir using SWMM and WASP5 (SWMM과 WASP5 모형을 사용한 하구담수호의 수질 예측)

  • Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.252-258
    • /
    • 2000
  • SWMM and WASP5 were applied for pollutant loading estimate from watershed and reservoir water quality simulation, respectively, to predict estuarine reservoir water quality. Application of natural systems to improve estuarine reservoir water quality was reviewed, and its effect was predicted by WASP5. Study area was the Hwa-Ong reservoir in Hwasung-Gun, Kyonggi-Do. Procedures for estimation of pollutant loading from watershed and simulation of corresponding reservoir water quality were reviewed. In this study, SWMM was proved to be an appropriate watershed model to the nonurban area, and it could evaluate land use effects and many hydrological characteristics of catchment. WASP5 is a well known lake water quality model and its application to the estuarine reservoir was proved to be suitable. These models are both dynamic and the output of SWMM can be linked to the WASP5 with little effort, therefore, use of these models for reservoir water quality prediction in connection was appropriate. Further efforts to develop more logical and practical measures to predict reservoir water quality are necessary for proper management of estuarine reservoirs.

  • PDF

Development and Application of Coliform Load Duration Curve for the Geum River (금강에 대한 대장균 부하 지속곡선의 개발 및 적용)

  • Kim, Geonha;Yoon, Jaeyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.516-519
    • /
    • 2005
  • An useful protocol coiled load duration curve methodology to estimate contaminant loading to a river on an exceedance probability scale was developed in this research. The technique was further applied to estimate total coliform loading to the Geum River, using the daily mean flow rate and total coliform concentration data during January, 1996 and July, 2004 for the Gongju where an automated monitoring station is located. Drought flow of the Gongju (=50.3 cms) was equivalent to 40% on an exceedance probability scale. Load duration curve for total coliform loading at the Gongju was constructed. Standard duration curve was constructed with the water quality criteria for the class 2 (total coliform concentration = 1000 MPN/100 mL). By plotting load duration curve with standard duration curve, it could be revealed that water quality do not meet the desired water quality for 47% on an exceedance probability scale. If linearity between flow rate and coliform concentration is assumed, it can be interpretated that water quality exceeds desired criteria when average mean flow rate is over 51 cms.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.