• Title/Summary/Keyword: differentiation of meat species

Search Result 8, Processing Time 0.023 seconds

Validation of PCR and ELISA Test Kits for Identification of Domestic Animal Species in Raw Meat and Meat Products in Korea (국내 유통 식육 및 식육가공품에서 축종감별을 위한 PCR 및 ELISA 검사법 검증)

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Seo, Kun-Ho;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.158-163
    • /
    • 2014
  • In this study, two commercial PCR and ELISA test kits were examined for identification of eight animal species (beef, pork, chicken, duck, turkey, goat, lamb, and horse) from raw meat and meat products in Korea. The detection limit in RAW meat ELISA kit$^{(R)}$ on three types of meat samples blended with beef, pork and chicken, demonstrated that all meat species were differentiable down to 0.2%. RAW meat ELISA kit$^{(R)}$ on animal species resulted in differentiation rate of 94.5% for beef, 93.3% for pork, 90% for lamb, and 100% for chicken, duck, turkey, goat, and horse. In contrast, Powercheck Animal Species ID PCR kit$^{TM}$ resulted in 100% specificity at 0.05% limit of detection for all meat species. The detection limit of Cooked Meat ELISA kit$^{(R)}$ on mixed meat samples heat-treated with different temperatures and times, resulted in 0.1% for all heat-treated mixed meat except for chicken at 1.0%. Additionally, ELISA kit on sixty meat products resulted in specificity of 31.8% for ham, 13.6% for sausages, and 12.5% for ground processed products, and relatively low rate for more than 2 types of mixed meats. On the contrary, meat species differentiation using PCR kit showed higher percentage than that using ELISA kit$^{(R)}$: 50.0% for ham, 41.7% for sausages, and 28.6% for ground processed meat. Futhermore, PCR kit on 54 dried beef meats detected pork genes in 13 products whereas ELISA kit showed negative results for all products. Hence, the possibility of cross-contamination during manufacturing process was investigated, and it was found that identical tumblers, straining trays, cutters and dryers were used in both beef and pork jerky production line, suggesting the inclusion of pork genes in beef products due to cross-contamination. In this study, PCR and ELISA test kits were found to be excellent methods for meat species differentiation in raw meat and heat-processed mixed meat. However, lower differentiation rate demonstrated in case of meat processed products raised the possibility of inclusion of other species due to cross-contamination during manufacturing process.

Identification of Meat Species Using PCR-RFLP Marker of Cytochrome b Gene

  • Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.375-379
    • /
    • 2006
  • Food labeling regulations require that the meat species in various meat products are accurately declared to the consumer. Substitution or adulteration of costly meat with a cheaper one is one of the most common problems in the meat industry. In this study, PCR-restriction fragment length polymorphism(RFLP) method of the mitochondrial cytochrome b(mt cyt b) gene has been applied for identification of the origin of six mammalian meat species(beef, port horse, goat, mutton and deer) and three poultry meat species(chicken, turkey and duck) as raw materials for meat products. PCR was used to amplify a variable region of mt cyt b gene. Meat species differentiation was determined by digestion of the amplified products with a 359 bp fragment using HaeIII and HinfI restriction enzymes, which generated species-specific RFLP patterns. This PCR-RFLP DNA marker of mt cyt b gene could be very useful for the accurate and reliable identification and discrimination of animal meat species in routine analysis.

Expression Analysis of Galectin-1 from Fat in Berkshire Pigs

  • Jung, Won Yong;Cho, Eun Seok;Kwon, Eun Jung;Park, Da Hye;Chung, Ki Hwa;Kim, Chul Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.167-176
    • /
    • 2008
  • Galectins are a group of animal lectins consisting of galectin-type carbohydrate recognition domains (CRD) with relatively minor domains. The biological properties of galectins include the regulation of inflammation, intercellular adhesion, cell differentiation and cell death. The diverse kinds of galectin suggest variety in their biological roles. Galectin-1 is released during adipocyte differentiation and is associated with fat which is one of the important factors for meat quality. To verify expression level, a 0.5 kb clone of galectin-1 was obtained from cDNA prepared from back fat tissue of a Sancheong Berkshire pig with good quality meat, and the galectin-1 gene identified. The deduced amino acid sequence of the galectin-1 gene was compared with those obtained from other species. By using RT-PCR and Real time-PCR, an attempt was made to determine the expression level of galectin-1 and to compare with various tissues (tenderloin and back fat) taken from pigs in different groups. Grouping of pigs was based on growth-stage (weighing 60, 80, and 110 kg) and the sub-speciation (Yorkshire and Sancheong Berkshire pigs). We attempted to determine influences of pig species, growth stages and tissue variations on the expression level of the galectin-l gene and it was revealed that the expression pattern of the galectin-1 gene was significantly different (p<0.01 or p<0.05). Galectin-1 genes were expressed more highly in the back fat tissues of pigs weighing 110 kg than in those weighing 60 kg or 80 kg. However, the lowest expression was seen in the tenderloin tissues of pigs weighing 110 kg. Sancheong Berkshire pigs showed higher expression of the galectin-1 gene compared to Yorkshire pigs. Accordingly, it is considered that the expression pattern of the galectin-1 gene influences the growth of back fat tissues and the pig speciation relationship. Previous studies suggested that different expression of galectin-1 genes represents variety among the breeds and is closely related to fat tissue growth, conjugation and catabolism. Further, this study suggests that the expression of galectin-1 at a specific growth stage and tissue contributes significantly to the overall meat quality of Sancheong Berkshire pigs.

Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population

  • Lee, Daehwan;Cho, Minah;Hong, Woon-young;Lim, Dajeong;Kim, Hyung-Chul;Cho, Yong-Min;Jeong, Jin-Young;Choi, Bong-Hwan;Ko, Younhee;Kim, Jaebum
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.692-698
    • /
    • 2016
  • Advances in next generation sequencing (NGS) technologies have enabled population-level studies for many animals to unravel the relationships between genotypic differences and traits of specific populations. The objective of this study was to perform evolutionary analysis of single nucleotide polymorphisms (SNP) in genes of Korean native cattle Hanwoo in comparison to SNP data from four other cattle breeds (Jersey, Simmental, Angus, and Holstein) and four related species (pig, horse, human, and mouse) obtained from public databases through NGS-based resequencing. We analyzed population structures and differentiation levels for the five cattle breeds and estimated species-specific SNPs with their origins and phylogenetic relationships among species. In addition, we identified Hanwoo-specific genes and proteins, and determined distinct changes in protein-protein interactions among five species (cattle, pig, horse, human, mouse) in the STRING network database by additionally considering indirect protein interactions. We found that the Hanwoo population was clearly different from the other four cattle populations. There were Hanwoo-specific genes related to its meat trait. Protein interaction rewiring analysis also confirmed that there were Hanwoo-specific protein-protein interactions that might have contributed to its unique meat quality.

Development of Multiplex PCR Assay for Identification of Eight Species from Meats in Korea (국내에서 유통되는 8종의 식육감별을 위한 multiplex PCR법 개발)

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Yoon, Hyang-Jin;Kim, Yeon-Hwa;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.28-35
    • /
    • 2016
  • Species identification of animal tissues in meat products is an important issue to protect the consumer from illegal and/or undesirable adulteration; for economic, religious and health reasons. In this reason, accurate analytical methods are needed for the labeling of meat products with requiring simple and fast procedure. Recently, applications of PCR in food analysis have been increased because of their simplicity, specificity and sensitivity. Therefore, in this study, a multiplex PCR assay was developed for the simultaneous identification of eight species of cow, pig, chicken, duck, goat, sheep, horse and turkey from raw meats. The primers were designed in different regions of mitochondrial 16S RNA after alignment of the available sequences in the GenBank database. Two multiplex primer sets were designed as Set 1 (cow, pig, chicken, duck) and Set 2 (goat, sheep, horse, turkey), respectively. Total 274 samples from cow (n = 55), pig (n = 30), chicken (n=30), and duck (n = 30), goat (n = 40), sheep (n = 33), horse (n = 41), and turkey (n = 15) were tested. The primers generated specific fragments of 94, 192, 279, 477 bp (pig, chicken, cow, duck), 670, 271, 152, 469 bp (goat, sheep, horse, turkey) lengths for eight species, respectively. The animal species specificity was 100% in all eight samples in the multiplex PCR assay. The detection limit of the multiplex PCR assay showed from 100 fg to 1 pg of template DNA from extracted from raw meats. When applying multiplex PCR assays to sample from pork/beef and pork/chicken, beef/chicken tested raw mixed meats and heat-treated ($83^{\circ}C$ for 30min, $100^{\circ}C$ for 20min, and $121^{\circ}C$ for 10min) mixtures, detection limit was 0.1% level beef, pork and pork in beef and chicken in pork and 1.0% level pork in chicken. This study suggest that the developed multiplex PCR assay can be used for rapid and simultaneous species identification of cow, pig, chicken, duck, goat, sheep, horse and turkey from meats.

Cardiac Differentiation of Chicken Spermatogonial Stem Cells-A Directional Approach

  • Sodhi, Simrinder Singh;Jeong, Dong Kee
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.137-142
    • /
    • 2014
  • A tremendous increase in the human population has put poultry industry under an increased pressure to meet steep increase in the demand. Poultry is contributing 25% of the total world's meat production and lesser cost of investment per bird makes it more suitable for the further breeding programmes. Major poultry diseases frequently lead to cardiac damage and cause huge economic losses to poultry industry due to mortality. The in vitro embryonic stem cell (ESC) technology has a futuristic approach for homogeneous populace of differentiated cells, for their further transplantations. During in vitro conditions the differentiated cell populace can be used in grafting and transplantation processes to regenerate damaged tissues. Therefore, the current study targeted the use of spermatogonial stem cells (SSCs) in the poultry production system through cardiac regeneration. The current study will also open new boulevard for the similar kind of research in other livestock species for the management of heart diseases.

Detection and Differentiation of Intentional and Unintentional Mixture in Raw Meats Using Real-time PCR (Real-time PCR을 이용한 식육원료의 의도적, 비의도적 혼입 판별법 개발)

  • Kim, Kyu-Heon;Kim, Mi-Ra;Park, Young-Eun;Kim, Yong-Sang;Lee, Ho-Yeon;Park, Yong-Chjun;Kim, Sang Yub;Choi, Jang Duck;Jang, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.340-346
    • /
    • 2014
  • In this study, the detection method was developed using real-time PCR to distinguish 4 species (bovine, porcine, horse, and chicken) of raw meats. The genes for distinction of species about meats targeted at 12S rRNA and 16S rRNA parts in mitochondrial DNA. Probes were designed to have a 5' FAM and a TAMRA at the 3' end. This study is to develop 4 species-specific primer and probes about raw materials and real-time PCR on 10 strains to observe the products of non-specific signal for similar species. As a result, any non-specific signal were not detected among each other. Real-time PCR method was developed for quantitation and identification of intentional and unintentional mixture in ground mixed meat (The difference of $C_T$ value between intentional mixture and 100% meat: $${\leq_-}$$ cycles, The difference of $C_T$ value between unintentional mixture and 100% meat: $${\geq_-}$$ cycles). The detection and differentiation of intentional and unintentional mixture in this study would be applied to food safety management for eradication of adulterated food distribution and protection of consumer's right.

Molecular Characterization of Hanwoo Glucose Transporter 4 Gene (한우 Glucose Transporter 4 유전자의 분자생물학적 해석)

  • Lee, S.M.;Jeong, Y.H.;Kim, H.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1087-1094
    • /
    • 2005
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose transport protein. In the glucose transport protein family, GLUT4 plays a key role in cellular glucose uptake stimulated by insulin in skeletal muscles and adipose tissue in rodents and human. In this studies, we reported the identification, characterization, and expression of Hanwoo GLUT4 gene. The Hanwoo GLUT4 cDNA includes a 1527 bp open reading frame encoding a protein of 509 amino acids. The GLUT4 amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The highest mRNA expression of GLUT4 was detected in heart and lower expression was detected in rib meat, sirloin, and colon. We confirmed the expression of GLUT4 in the subcutaneous and small intestinal adipose tissue using RT-PCR. To investigate the expression of GLUT4 in the bovine intramuscular adipose differentiation, fibroblast-like cells were isolated from the sirloin of Hanwoo bull aged 12 months by collagenase digestion of minced tissue and cultured with activators of PPAR gamma. We identified that GLUT4 mRNA expression decreased during differentiation of preadipocytes into adipocyte in Korean cattle. These results indicated that function of GLUT4 in bovine adipose tissue was different from that of mouse and human.