• Title/Summary/Keyword: differential thermal analysis

Search Result 679, Processing Time 0.03 seconds

Studies on the Fusibility of Fly Ash-Flux Mixtures (융제 첨가 비산회의 융융성 연구)

  • Yang, Hyun S.;Lee, Kyu C.;Park, Chu S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.985-993
    • /
    • 1997
  • The effects of CaO and MgO fluxes on the fusibility of fly-ashes were investigated for two different fly-ashes. A fusion temperature of mixtures of selected fly-ashes and fluxes were measured by the ASTM test method(D1857) and the differential thermal analysis. IDT of these samples added CaO and MgO as a fluxing agent dropped in the range of 114 to $294^{\circ}C$ and 80 to $224^{\circ}C$, respectively. Compared with ash fusion temperature to Base/Acid ratio, the lowest ash fusion temperature were measured in the range of 0.7 to 0.8 for CaO-fly ash mixtures and 0.3 to 0.4 for MgO-fly ash mixtures. As a result, MgO in small addition acted as a more effective flux than CaO. A conventional Base/Acid ratio and liquidus point of ternary diagram did not show a good correlation with ash fusion temperature for these samples. In pure fusion temperature of fly ash-mixtures, DTA was better method than ASTM test method.

  • PDF

A Study on the Manufacturing and Mechanical Properties of the PA66/EPDM/PP Composites for Enhanced Low Temperature Fracture Resistances (저온 내충격성 향상을 위한 PA66/EPDM/PP 복합체 제조와 기계적 특성 연구)

  • Lee, Tae-Sik;Yoon, Chang-Rok;Bang, Dae-Suk;Ahn, Dae-Young;Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.164-174
    • /
    • 2009
  • PA66/EPDM/PP-g-MA and PA66/EPDM-g-MA/PP-g-MA composites were manufactured by a modular intermeshing twin screw extruder for enhanced low temperature impact resistance with different content of PP-g-MA. The results showed that composite containing 90 wt% of PA66, 8 wt% of EPDM-g-MA, and 2 wt% of PP-g-MA has a optimum value in the thermal and mechanical properties. The characteristics of the composites were analyzed by TGA, DSC, and SEM. From above results, we established that the low interfacial strength and the impact resistance at low temperature shown in a pre-existing PP/EPDM composite were enhanced by grafting with compatibilizer such as maleic anhydride. These results show the possibility of local manufacturing process and cost down with optimum screw configuration for best mixing quality in the twin screw extruder.

The Optical Properties of B2O3-Bi2O3-PbO-SiO2 Glass System (B2O3-Bi2O3-PbO-SiO2계 유리의 광학적인 특성)

  • Joung, Maeng Sig;Kim, Hong Seon;Lee, Su Dae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 2000
  • Four glasses of $B_2O_3-Bi_2O_3-PbO-SiO_2$ (BBPS) system were prepared by melting the appropriate amounts of reagent grade oxides of $B_2O_3$, $Bi_2O_3$, PbO, and $SiO_2$ in an open crucible. The differential thermal analysis showed crystallization temperature decreased with increasing $Bi_2O_3$ or PbO content in the sample. The structures of glasses system were studied using scanning electron microscopy and Fourier transform-Infra red (FT-IR) spectroscopy. The UV cut-off and refractive index were found to be sensitive to the $Pb^{+2}$ and $Bi^{+3}$ content in the glasses. The behavior of the IR spectra of the glasses in the BP series was consistent with a role of $Bi_2O_3$ as a network former. In the BP series of glasses, the result of IR spectrum indicated that PbO behaved as a network former.

  • PDF

The study for fabrication and characteristic of Li$_2$O-2SiO$_2$conduction glass system using conventional and microwave energies (마이크로파와 재래식 열원을 이용한 고체 전지용 Li$_2$O-2SiO$_2$계 전도성 유리의 제조 및 특성에 관한 연구)

  • Park, Seong-Soo;Kim, Kyoung-Tae;Kim, Byoung-Chan;Park, Jin;Park, Hee-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • The behavior of nucleation and crystallization in the $Li_2O_3-SiO_2$ glass heat-treated at different condition under the conventional and microwave processing was studied by differential thermal analysis (DTA), X-ray diffractometry (XRD), optical microscopy (OM), and electrical conductivity measurement. Nucleation temperature and temperature of maximum nucleation rate in both conventionally and microwave heat-treated samples were 460~$500^{\circ}C$ and $580^{\circ}C$, respectively. It was expected that the probability for bulk crystallization increased in microwave heat-treated sample, compared to conventionally heat-treated one. Degree of crystallization increased with increasing crystallization temperature in both conventionally and microwave heat-treated samples. However, pattern of crystallization growth under microwave processing appeared to be quite different from that under the conventional one due to its internal or volumetric heating. Electrical conductivity of conventionally and microwave heat-treated samples were 1.337~2.299, 0.281~~$0.911{\times}10^{-7}\Omega {\textrm}{cm}^{-1}$, respectively.

  • PDF

Mechanical Properties of PVC Complexes Using Waste-Gypsum (I) (폐석고를 활용한 PVC 복합체 수지의 기계적 물성 (I))

  • Ho, Dong-Su;Park, Young-Hoon;Nah, Jae-Woon;Choi, Chang-Yong;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • In this study, mechanical properties of PVC complexes containing the gypsum (Namhae Chemical Co.) which contains phosphte, CaO, etc., Pb-species stabilizer, and $CaCO_3$ were investigated as a function or the content. As a result, mechanical properties increased when the gypsum was mixed with PVC at the extent of 8.46wt%. From this result, it is suggested that the gypsum containing phosphate and CaO is compatible with PVC. Thermogravimetric analysis(TGA) showed that pyrolysis started about at $275^{\circ}C$, and residual weight(%) increased with the amount of the gypsum, and differential scanning calorimetry (DSC) showed that $T_m,\;T_g$ had the maximum and minimum value respectively when the gypsum was mixed with PVC at the extent of 8.46wt%. Comparing all the results, both mechanical and thermal properties of PVC complex were improved. The X-ray diffraction measurement also showed their blonds and structures.

Colorless Copolyimide Films: Thermo-mechanical Properties, Morphology, and Optical Transparency (무색 투명한 폴리이미드 공중합체 필름 : 열적-기계적 성질, 모폴로지, 및 광학 투명성)

  • Jin, Hyo-Seong;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2008
  • Copolyimides containing pendant trifluoromethyl ($CF_3$) groups were synthesized from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy)phenyl]sulfone (BAPS) with various concentrations of 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane(BAPP) to poly(amic acid)(PAA), followed by thermal imidization. These copolyimides were readily soluble in N,N'-dimethylacetamide (DMAc) and could be solution-cast into a flexible and tough film. The thermomechanical properties, morphology and an optical transparency of the copolyimide films were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), scanning electron microscopy (SEM), universal tensile machine (UTM), and a UV-Vis spectrometer. The cast copolyimide films exhibited high optical transparency with a cut-off wavelength (${\lambda}_0$) of $275{\sim}319\;nm$ in UV-vis absorption and a low yellow index(YI) value of $3.65{\sim}10.37$. The thermo-mechanical properties of copolyimide films were enhanced linearly with increasing a BAPP content. In contrast, the optical transparency of the copolyimide films was found to get worse with increasing a BAPP content.

Effect of heat treatment on physicochemical properties of soybean (열처리 방법에 따른 대두의 이화학적 특성 변화)

  • Kim, Sun Hee;Jung, Eun Suk;Kim, So Young;Park, Shin Young;Cho, Yong Sik
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.820-826
    • /
    • 2017
  • Soybean is one of the most common food materials for making traditional Korean foods such as soybean paste, soy source and soy snack, and their manufacturing processes include heat treatment of soybean. This study was carried out to investigate the effect of heat treatment on the physicochemical properties of soybean. All samples were heat treated under commercial steamed, puffed or air-fried conditions, and then the protein molecular weight distribution, thermal properties, fluorescence intensity, protein solubility, and water and oil holding ability of the heat treated soybeans were examined. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that heat treatment caused fragmentation of polypeptide chain in soybean, showing the band of low molecular ranging from 17 to 40 kDa. The differential scanning calorimetric analysis showed the decrease of enthalpy values (${\Delta}H$) by heat treatment. Fluorescence spectroscopy indicated that the heat treatment caused lipid oxidation as proved by increasing emission intensity. The protein solubility at pH 3-6, and water holding capacity of heat treated soybeans were the higher than no treatment. These results suggest that the heat treatment resulted in decreased enthalpy values, and increased protein degradation, lipid oxidation and water affinity of soybean. Moreover, the effect of heat treatment on physiochemical properties of soybeans was more significant under air-fried condition.

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

Effect of Artificial Granular Zeolite(AGZ) on Purification of Heavy Metals in Wastewater and Alleviation or Rice Seeding Growth Damage (입상 인공제올라이트를 이용한 중금속 폐수 정화와 벼 유묘 생육장해 경감)

  • Lee, Deog-Bae;Lee, Kyeong-Bo;Lee, Sang-Bok;Kim, Jae-Duk;Henmi, Teruo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.446-451
    • /
    • 1999
  • This study was carried out to investigate some mineralogical characteristics of Artificial Granular Zeolite (AGZ) and effect of AGZ on purification and alleviation of rice seedling damages of mine wastewater containing heavy metals. AGZ had mainly representative Na-P1 peaks and some $C_3S$ peaks of Portland cement in X-ray diffractogram. Differential thermal analysis represented that AGZ had weak endothermic peak around $130^{\circ}C$ and new deep endothermic peak around $750^{\circ}C$ as compared to powdery artificial zeolite. The ranking of heavy metals removals by AGZ, was lead> copper> cadmium> zinc in the synthetic wastewater. Root growth of rice seedling was greatly inhibited in the mine wastewater, and died after all. As AGZ treated into the mine wastewater with the ratio 1 : 50 (W : V) for one day or 1 : 100 for 4 days, the concentrations of heavy metals in the mine wastewater were decreased to below the critical concentration for agricultural use. And rice seedlings were grew with little damages in the purified water by AGZ.

  • PDF

Properties of Glass Melting Using Recycled Refused Coal Ore (선탄 경석 재활용 원료를 이용한 유리 용융 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.727-733
    • /
    • 2019
  • In this study, the glass melting properties are evaluated to examine the possibility of using refused coal ore as replacement for ceramic materials. To fabricate the glass, refused coal ore with calcium carbonate and sodium carbonate in it (which are added as supplementary materials) is put into an alumina crucible, melted at $1,200{\sim}1,500^{\circ}C$ for 1 hr, and then annealed at $600^{\circ}C$ for 2 hrs. We fabricate a black colored glass. The properties of the glass are measured by XRD (X-ray diffractometry) and TG-DTA (thermogravimetry-differential thermal analysis). Glass samples manufactured at more than $1,300^{\circ}C$ with more than 60 % of refused coal ore are found by XRD to be non-crystalline in nature. In the case of the glass sample with 40 % of refused coal ore, from the sample melted at $1,200^{\circ}C$, a sodium aluminum phosphate peak, a disodium calcium silicate peak, and an unknown peak are observed. On the other hand, in the sample melted at $1,300^{\circ}C$, only the sodium aluminum phosphate peak and unknown peak are observed. And, peak changes that affect crystallization of the glass according to melting temperature are found. Therefore, it is concluded that glass with refused coal ore has good melting conditions at more than $1,200^{\circ}C$ and so can be applied to the construction field for materials such as glass tile, foamed glass panels, etc.