• Title/Summary/Keyword: differential phase shifter

Search Result 12, Processing Time 0.029 seconds

Simulation of A 90° Differential Phase Shifter for Korean VLBI Network 129 GHz Band Polarizer

  • Chung, Moon-Hee;Je, Do-Heung;Han, Seog-Tae;Kim, Soo-Yeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • A simulation for the design of a $90^{\circ}$ differential phase shifter aimed toward Korean VLBI Network (KVN) 129 GHz band polarizer is described in this paper. A dual-circular polarizer for KVN 129 GHz band consists of a $90^{\circ}$ differential phase shifter and an orthomode transducer. The differential phase shifter is made up of a square waveguide with two opposite walls loaded with corrugations. Three-dimensional electromagnetic simulation has been performed to predict the $90^{\circ}$ differential phase shifter's characteristics. The simulation for the differential phase shifter shows that the phase shift is $90^{\circ}{\pm}3.3^{\circ}$ across 108-160 GHz and the return losses of two orthogonal modes are better than -30 dB within the design frequency band. According to the simulation results the calculated performance is quite encouraging for KVN 129 GHz band application.

Design and Fabrication of Distributed Analog Phase Shifter Using Ferroelectric (Ba,Sr)TiO$_3$ Thin Films (강유전체 (Ba,Sr)TiO$_3$ 박막을 이용한 분포 정수형 아날로그 위상변위기 설계 및 제작)

  • 류한철;김영태;문승언;곽민환;이수재
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.370-374
    • /
    • 2002
  • This paper describes the design and fabrication of distributed analog phase shifter circuit. The phase shifter consist of coplanar waveguide(CPW) lines that are periodically loaded with voltage tunable (Ba,Sr)TiO$_3$ thin film interdigital(IDT) capacitors deposited by the pulsed laser deposition(PLD) on (001) MgO single crystals. The phase velocity on these IDT loaded CPW lines is a function of applied bias voltage, thus resulting in analog phase shifting circuits. The measured differential phase shift is 48$^{\circ}$ and the insertion loss decreases from -5㏈ to -3㏈ with increasing bias voltage from 0 to 40 V at 100㎐.

  • PDF

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

X-Band Phased Array Antenna Using Ferroelectric $(Ba,Sr)TiO_3$ Coplanar Waveguide Phase Shifter

  • Moon, Seung-Eon;Ryu, Han-Cheol;Kwak, Min-Hwan;Kim, Young-Tae;Lee, Su-Jae;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2005
  • A phased array antenna was fabricated using four-element ferroelectric phase shifters with a coplanar waveguide (CPW) transmission line structure based on a $Ba_{0.6}Sr_{0.4}TiO_3(BST)/MgO$ structure. Epitaxial BST films were deposited on MgO (001) substrates by pulsed laser deposition. To attain the large differential phase shift and small losses for a ferroelectric CPW phase shifter, an impedance-matching-part adding technique between the effective transmission line and connecting cable was used. The return loss and insertion loss for this techniqueadapted BST CPW device were improved with respect to those for a normal BST CPW device. For an X-band phased array antenna system consisting of ferroelectric BST CPW phase shifters, power divider, dc block, patch antenna, and programmed dc power, the steering beam could be tilted by $15^{\circ}$ in either direction.

  • PDF

Design and Implementation of Flux-Driven Waveguide Ferrite Phase Shifters (자속밀도 제어형 페라이트 도파관 변위기 설계 및 제작)

  • 김동석;박동철;이용희;김윤명
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.1
    • /
    • pp.3-10
    • /
    • 1992
  • Flux-drive waveguide phase shifter is designed by twin-slab model. Measured differential phase shifts are smaller than the theoretical values by 8-9 percents. Measured insertion loss and VSWR of the phase shifter using TT73-2200 ferite are less than 0.45dB and 1.25 respectively, within pass band. The phase shifter using double-setup transformer shows wider bandwidth characteristics. Finally the reduced-height waveguide phase shifter using TT3-2900 ferrite shows very efficient suppression of higher-oreder modes.

  • PDF

Design and Implementation of Reactive Circuit for Ferroelectric Phase Shifter (강유전체 위상 변위기를 위한 Reactive Circuit 설계 및 구현)

  • Kim Young-Tae;Moon Seung-Eon;Lee Su-Jae;Kim Sun-Hyeong;Park Jun-Seok;Cho Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.286-288
    • /
    • 2003
  • In this paper, in order to obtain a large differential phase shift with a little change in applied voltage, a ferroelectric reflective load circuit has been designed on top of barium strontium titanate $(Ba,Sr)TiO_3$ [BST] thin film. The design of the ferroelectric reflection-type phase shifter is based on a reflection theory of terminating circuit, which has a reflection-type analogue phase shifter with two ports terminated in symmetric phase-controllable reflective networks. To achieve large amounts of phase shift in low bias-voltage range, the effects of change of capacitance and transmission line connected with two coupled ports of a 3-dB $90^{\circ}$ branch-line hybrid coupler have been investigated. A large phase shift with a small capacitance change in the parallel terminating circuit has been demonstrated in the paper.

  • PDF

Design and Fabrication of Distributed Analog Phase Shifter Using Ferroelectric $(Ba,\;Sr)TiO_3$ Thin Films (강유전체 $(Ba,\;Sr)TiO_3$ 박막을 이용한 분포 정수형 아날로그 위상 변위기 설계 및 제작)

  • Ryu, Han-Cheol;Moon, Seung-Eon;Lee, Su-Jae;Kwak, Min-Hwan;Lee, Sang-Seok;Kim, Young-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.616-619
    • /
    • 2003
  • This work presents the design, fabrication and microwave performance of distributed analog phase shifter (DAPS) fabricated on $(Ba,\;Sr)TiO_3$ (BST) thin films for X-band applications. Ferroelectric BST thin films were deposited on MgO substrates by pulsed laser deposition. The DAPS consists of high impedance coplanar waveguide (CPW) and periodically loaded tunable BST interdigitated capacitors (IDC). In order to reduce the insertion loss of DAPS and to remove the alteration of unloaded CPW properties according to an applied dc bias voltage, BST layer under transmission lines were removed by photolithography and RF-ion milling. The measured results are in good agreement with the simulated results at the frequencies of interest. The measured differential phase shift based on BST thin films was $24^{\circ}$ and the insertion loss decreased from 1.1 dB to 0.7 dB with increasing the bias voltage from 0 to 40V at 10 GHz.

  • PDF

Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor (회전형 초음파모터의 소형 위상차 제어기 개발)

  • Yi Dong-Chang;Lee Myoung-Hoon;Lee Eu-Hark;Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

BSTO Ferroelectric-Based Meander-Type Tunable Phase Shifter (BSTO 강유전체에 기반한 Meander-Type 가변 위상 천이기)

  • Chai, Dongkyu;Linh, Mai;Yim, Munhyuk;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.904-908
    • /
    • 2002
  • In this paper, we propose a 4-coupled ferroelectric-based meander-type microstrip-line tunable phase shifter which has less than 2dB of insertion loss (IL) and larger than 10dB of return loss (RL)over 13~170Hz .Particularly at 15GHz, the differential phase shift (DPS) is observed to be $89{\circ}$ at zero bias and it increases up to $115{\circ}$ when 150V is applied. This indicates a DPS tunability of $26{\circ}$.

Metamaterial CRLH Structure-based Balun for Common-Mode Current Indicator

  • Kahng, Sungtek;Lee, Jinil;Kim, Koon-Tae;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.301-306
    • /
    • 2014
  • We proposed a new PCB-type 'common-mode current($I_c$) and differential-mode current($I_d$) detector' working for fast detection of $I_c$ and $I_d$ from the differential-mode signaling, with miniaturization effect and possibility of cheaper fabrication. In order to realize this device, we suggest a branch-line-coupler balun having a composite right- and left-handed(CRLH) one-layer microstrip phase-shifting line as compact as roughly ${\lambda}_g/14$. The presented balun obviously is different from the conventional bent-&-folded delay lines or slits on the ground for coupling the lines on the top and bottom dielectrics. As we connect the suggested balun output ports of the differential-mode signal lines via the through-port named U and coupled-port named L, $I_c$ and $I_d$ will appear at port ${\Delta}$ and port ${\Sigma}$ of the present device, in order. The validity of the design scheme is verified by the circuit-and numerical electromagnetic analyses, and the dispersion curve proving the metamaterial characteristics of the geometry. Besides, the examples of the $I_c$ and $I_d$ indicator are observed as the even and odd modes in differential-mode signal feeding. Also, the proposed device is shown to be very compact, compared with the conventional structure.