• 제목/요약/키워드: differential labeling

검색결과 27건 처리시간 0.026초

Ki-67 Labeling Indices in 'Classic' versus 'Blastoid' Mantle Cell Lymphomas - Proposed Cutoff Values for Routine Diagnostic Workup

  • Pervez, Shahid;Haroon, Saroona;Awan, Dreema
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6591-6594
    • /
    • 2015
  • Background: Mantle-cell lymphoma (MCL) is a unique entity of peripheral B-cell lymphoma that has a discrete morphologic, immunologic, and genetic phenotype, with more common 'classic' and less frequent 'blastoid' and 'pleomorphic' variants, associated with an aggressive clinical course. The aim of this study was to analyze proliferation (Ki-67) indices of 'classic' (c-MCL) and 'blastoid' (b-MCL) variants of a cohort of MCL and to suggest cut off values for the Ki-67 proliferation index in these two subsets. Materials and Methods: MCL cases diagnosed over $4{\frac{1}{2}}$ years at Section of Histopathology, Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi were retrieved and reviewed. Ki-67 labelling was scored and analysed. Results: A total of 90 of cases of MCL were scrutinized. Mean age ${\pm}SD$ was $60.2{\pm}12.5$ years and the male to female ratio was 4:1, with 67 (75%) cases of c-MCL and 23 (25%) cases of b-MCL. Most samples were lymph node biopsies (n=68), whereas the remainder were from various extranodal sites The mean Ki-67 proliferation index was $29.5%{\pm}14.4%$ in classic variants and $64.4{\pm}15.2%$ for the blastoid variant, the difference being statistically significant (p = 0.029). Conclusions: It was concluded that differential cut-off values of Ki-67 labeling may be used in more objective way to reliably classify MCL into classic or blastoid variants by diagnostic pathologists. We propose a < 40 proliferative index to be suggestive of c-MCL and one of > 50 for the blastoid variant.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

칼라팔레트의 불량 식별을 위한 영상처리 시스템 구현 (Implementation of Image Processing System for the Defect Inspection of Color Polyethylene)

  • 김경민;박중조;송명현
    • 한국정보통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.1157-1162
    • /
    • 2001
  • 본 논문에서는 영상 처리 기법을 이용하여 칼라 팔레트 외형상의 불량품을 식별하는 연구를 수행하고자 한다 먼저 기본적인 팔레트 자동선별시스템의 필요성에 대해 기술하며, 각 샘플링된 팔레트에 대해 영상처리기법을 이용한 불순물 검출 알고리즘을 제안하고자 한다. 또한 이를 상용화할 수 있도록 윈도우환경의 비전처리 프로그램을 제시하였다. 끝으로 본 연구에 대한 평가와 앞으로의 연구과제에 대해 기술하고자 한다.

  • PDF

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Differential Regulation of the Genes of the Streptococcus pneumoniae dnaK Operon by Ca++

  • Kim, Seung-Whan;Bae, Yong-Goo;Pyo, Suhk-Neung;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.239-245
    • /
    • 2007
  • DnaK is a major antigen in Streptococcus pneumoniae, and is induced by a minor shift in temperature (30 to $37^{\circ}C$) but not by ethanol shock. Although HrcA in the presence of $Ca^{{+}{+}}$ represses the expression of both groEL and hrcA, the control of transcription of the dnaK operon is not completely understood. In this study, the dnaK operon of S. pneumoniae (5' hrcA-grpE-dnaK-dnaJ) was cloned and analyzed. It contains large intergenic regions in grpE/dnaK and dnaK/dnaJ. Pulse labeling with [$^{35}S$]-methionine and immunoblot analyses revealed the presence of higher levels of DnaK than of HrcA even in the presence of $Ca^{{+}{+}}$ after heat shock suggesting that $Ca^{{+}{+}}$ differentially regulates the heat shock responses of hrcA and dnaK. By blocking de novo mRNA synthesis with rifampin it was shown that neither the hrcA nor the groEL transcripts were stabilized by heat shock even though dnaK transcripts were stabilized. We conclude that S. pneumoniae uses fine regulation of the transcription of the individual genes of the tetracistronic dnaK operon to cope with the various stresses experienced during infections.

MCM3 as a Novel Diagnostic Marker in Benign and Malignant Salivary Gland Tumors

  • Ashkavandi, Zohreh Jaafari;Najvani, Ali Dehghani;Tadbir, Azadeh Andishe;Pardis, Soheil;Ranjbar, Mohammad Ali;Ashraf, Mohammad Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3479-3482
    • /
    • 2013
  • Background: Proliferation markers widely have been used to diagnose and determine the behaviour and prognosis of benign and malignant tumours. Minichromosome maintenance 3 (MCM3) is a novel proliferation marker. The aim of this study was to evaluate and compare MCM3 with Ki-67 in diagnosis of salivary gland tumours. Materials and Methods: In this retrospective study, immunohistochemical expression of MCM3 and Ki-67 was evaluated in 15 pleomorphic adenomas (PA), 17 mucoepidermoid carcinomas (MEC) and 18 adenoid cystic carcinomas (ADCC). Labeling indices (LIs) for the two markers were calculated and compared. Results: MCM3 and Ki-67 LIs were significantly higher in MEC and ADCC compared to PA. The LI of MCM3 was significantly higher than that of Ki-67 in MEC and PA. There was no significant difference between the two markers in ADCC. A cut-off point of 8% with 74.3% sensitivity and 93.3% specificity for MCM3 was obtained to discern between benign and malignant tumors. Conclusions: These results suggest that MCM3 might be a useful proliferation marker for differential diagnosis and recognition of clinical behavior of salivary gland tumors.

Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis

  • Ding, He;Gong, Pengtao;Yang, Ju;Li, Jianhua;Li, He;Zhang, Guocai;Zhang, Xichen
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.121-128
    • /
    • 2017
  • Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected ($V^+$) and uninfected ($V^-$) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in $V^+$ compared with $V^-$ isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in $V^+$ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in $V^+$ and $V^-$ isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

Differential Alterations of Endotoxin-induced Cytokine Expression and Mitogen-activated Protein Kinase Activation by Mercury in Mouse Kidney

  • Kim, Sang-Hyun;Kim, Dae-Keun;Shin, Tae-Yong;Choi, Cheol-Hee
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.233-239
    • /
    • 2004
  • The present study was designed to determine the impact of mercury on endotoxin-induced inflammatory cytokine expression and corresponding signal transduction in mouse kidney. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercury in drink-ing water for 14 days and at the end of the treatment period, lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 h prior to euthanasia. The doses of mercury and LPS did not cause hepatotoxicity or renal toxicity as indicated by unaltered plasma alanine aminotransferase and aspartate aminotransferase levels, and terminal UTP nucleotide end-labeling assay from kidney, respectively. Mercury decreased kidney glutathione (GSH) and with LPS, it additively decreased GSH. Mercury activated p38 mitogen-activated protein kinase (MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. In contrast, mercury inhibited LPS-induced activation of extra-cellular signal-regulated kinase (ERK) but had no effect alone. Mercury increased the gene expression of tumor necrosis factor $\alpha$ (TN F$\alpha$) and potentiated LPS-induced TNF$\alpha$ expression. Mercury did not affect LPS-induced interleukin-1$\beta$ (IL-1$\beta$) expression but decreased LPS-induced IL-6 expression. These results suggest that low levels of mercury might augment LPS-induced TNF$\alpha$ expression by altering GSH and p38 MAPK. Mercury modulates LPS-induced p38 and ERK activation, and downstream TNF$\alpha$ and IL-6 expression in kidney, respectively.

Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays

  • Salim, Elsayed I;Hegazi, Mona M;Kang, Jin Seok;Helmy, Hager M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1023-1035
    • /
    • 2016
  • The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemically-induced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.

Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis

  • Lee, Jae Eun;Lee, Jae Young;Kim, Hong Rye;Shin, Hyun Young;Lin, Tao;Jin, Dong Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.788-795
    • /
    • 2015
  • Two dimensional-fluorescence difference gel electrophoresis (2D DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2 non-pregnant were used in this study. The pre-electrophoretic labeling of pregnant and non-pregnant serum proteins were mixed with Cy3 and Cy5 fluorescent dyes, respectively, and an internal standard was labeled with Cy2. Labeled proteins with Cy2, Cy3, and Cy5 were separated together in a single gel, and then were detected by fluorescence image analyzer. The 2D DIGE method using fluorescence CyDye DIGE flour had higher sensitivity than conventional 2D gel electrophoresis, and showed reproducible results. Approximately 1,500 protein spots were detected by 2D DIGE. Several proteins showed a more than 1.5-fold up and down regulation between non-pregnant and pregnant serum proteins. The differentially expressed proteins were identified by MALDI-TOF mass spectrometer. A total 16 protein spots were detected to regulate differentially in the pregnant serum, among which 7 spots were up-regulated proteins such as conglutinin precursor, modified bovine fibrinogen and IgG1, and 6 spots were down-regulated proteins such as hemoglobin, complement component 3, bovine fibrinogen and IgG2a three spots were not identified. The identified proteins demonstrate that early pregnant bovine serum may have several pregnancy-specific proteins, and these could be a valuable information for the development of pregnancy-diagnostic markers in early pregnancy bovine serum.