• Title/Summary/Keyword: differential information hypothesis

Search Result 11, Processing Time 0.019 seconds

Analysis of Interpretation Processes Through Readers' Thinking Aloud in Science-Related Line Graphs (과학관련 선 그래프를 해석하는 고등학생들의 발성사고 과정 분석)

  • Kim, Tae-Sun;Kim, Beom-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.2
    • /
    • pp.122-132
    • /
    • 2005
  • Graphing abilities are critical to understand and convey information in science. And then, to what extent are secondary students in science courses able to understand line graphs? To find clues about the students' interpretation processes of the information in science-related line graphs, this study has the following research question: Is there a difference between the levels of complexity of good and poor readers as they use the thinking aloud method for studying cognitive processes? The present study was designed to provide evidence for the hypothesis that good line graph readers use a specific graph interpretation process when reading and interpreting line graphs. With the aid of the thinking aloud method we gained deeper insight into the interpretation processes of good and poor graph readers while verifying verbal statements with respect to line graphs. The high performing students tend to read much more information and more trend-related information than the low performing students. We support the assumption of differential line graph schema existing in the high performing students in conjunction with general graph schema. Also, high performing students tend to think aloud much more metacognitively than low performing students. High performing students think aloud a larger quantity of information from line graphs than low performing students, and more trend-related sentences than value-related sentences from line graphs. The differences of interpretation processes revealed between good and poor graph readers while reading and interpreting line graphs have implications for instructional practice as well as for test development and validation. Teaching students to read and interpret graphs flexibly and skillfully is a particular challenge to anyone seriously concerned with good education for students who live in an technological society.