• Title/Summary/Keyword: differential evolution.

Search Result 286, Processing Time 0.029 seconds

Global Optimization Using Kriging Metamodel and DE algorithm (크리깅 메타모델과 미분진화 알고리듬을 이용한 전역최적설계)

  • Lee, Chang-Jin;Jung, Jae-Jun;Lee, Kwang-Ki;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.537-542
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on computer simulation. But defining exact model using computer simulation is too expensive and time consuming in the complicate systems. Thus, designers often use approximation models, which express the relation between design variables and response variables. These models are called metamodel. In this paper, we introduce one of the metamodel, named Kriging. This model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. This class of interpolating model has flexibility to model response data with multiple local extreme. By reason of this multi modality, we can't use any gradient-based optimization algorithm to find global extreme value of this model. Thus we have to introduce global optimization algorithm. To do this, we introduce DE(Differential Evolution). DE algorithm is developed by Ken Price and Rainer Storn, and it has recently proven to be an efficient method for optimizing real-valued multi-modal objective functions. This algorithm is similar to GA(Genetic Algorithm) in populating points, crossing over, and mutating. But it introduces vector concept in populating process. So it is very simple and easy to use. Finally, we show how we determine Kriging metamodel and find global extreme value through two mathematical examples.

  • PDF

An Evolutionary Optimized Algorithm Approach to Compensate the Non-linearity in Linear Variable Displacement Transducer Characteristics

  • Murugan, S.;Umayal, S.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2142-2153
    • /
    • 2014
  • Linearization of transducer characteristic plays a vital role in electronic instrumentation because all transducers have outputs nonlinearly related to the physical variables they sense. If the transducer output is nonlinear, it will produce a whole assortment of problems. Transducers rarely possess a perfectly linear transfer characteristic, but always have some degree of non-linearity over their range of operation. Attempts have been made by many researchers to increase the range of linearity of transducers. This paper presents a method to compensate nonlinearity of Linear Variable Displacement Transducer (LVDT) based on Extreme Learning Machine (ELM) method, Differential Evolution (DE) algorithm and Artificial Neural Network (ANN) trained by Genetic Algorithm (GA). Because of the mechanism structure, LVDT often exhibit inherent nonlinear input-output characteristics. The best approximation capability of optimized ANN technique is beneficial to this. The use of this proposed method is demonstrated through computer simulation with the experimental data of two different LVDTs. The results reveal that the proposed method compensated the presence of nonlinearity in the displacement transducer with very low training time, lowest Mean Square Error (MSE) value and better linearity. This research work involves less computational complexity and it behaves a good performance for nonlinearity compensation for LVDT and has good application prospect.

Design of Optimized Pattern Classifier for Discrimination of Precipitation and Non-precipitation Event (강수 및 비 강수 사례 판별을 위한 최적화된 패턴 분류기 설계)

  • Song, Chan-Seok;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1337-1346
    • /
    • 2015
  • In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.

Structural design of Optimized Interval Type-2 FCM Based RBFNN : Focused on Modeling and Pattern Classifier (최적화된 Interval Type-2 FCM based RBFNN 구조 설계 : 모델링과 패턴분류기를 중심으로)

  • Kim, Eun-Hu;Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.692-700
    • /
    • 2017
  • In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.

An Improved Differential Evolution for Economic Dispatch Problems with Valve-Point Effects (개선된 DE 알고리즘을 이용한 전력계통의 경제급전)

  • Jeong, Yun-Won;Lee, Joo-Won;Jeong, Sang-Yun;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.848-849
    • /
    • 2007
  • This paper presents an efficient approach for solving the economic dispatch (ED) problems with valve-point effects using differential evolution (DE). A DE, one of the evolutionary algorithms (EAs), is a novel optimization method capable of handling nonlinear, non-differentiable, and nonconvex functions. And an efficient constraints treatment method (CTM) is applied to handle the equality and inequality constraints. The resultant DE-CTM algorithm is very effective in solving the ED problems with nonconvex cost functions. To verify the superiority of the proposed method, a sample ED problem with valve-point effects is tested and its results are compared with those of previous works. The simulation results clearly show that the proposed DE-CTM algorithm outperforms other state-of-the-art algorithms in solving ED problems with valve-point effects

  • PDF

Optimization of Design Variables of a Train Suspension Using Neural Network Model (신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화)

  • 김영국;박찬경;황희수;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

Morphology-Based Homomorphic Filter for Contrast Enhancement of Mammographic Images (유방조영 영상의 대비개선을 위한 형체기반 호모몰픽필터)

  • Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.522-527
    • /
    • 2010
  • In this paper, a new MBHF(Morphology-Based Homomorphic filter) is presented to enhance contrast in mammographic images. The MBH filtering is performed based on the morphological sub-bands, in which an image is morphologically decomposed. The filter is designed to have optimal gain and structuring element in each sub-band through differential evolution. Experimental results show that the proposed method improves the contrast in mammographic images such that an evaluation criterion, WPSNR(Weighted Peak Signal to Noise Ratio) which takes into account human visual system is increased compared with a wavelet-based Homomorphic filter.

Hybrid Optimization Method for the Reconstruction of Apodized Chirped Fiber Bragg Gratings (무족화 첩 광섬유 격자 재구성을 위한 혼합 최적화 방법)

  • Youn, Jaesoon;Im, Kiegon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.6
    • /
    • pp.203-211
    • /
    • 2016
  • We have studied the hybrid method for reconstructing apodized chirped fiber Bragg gratings, using both an analytic estimation of grating parameters and an optimization algorithm. The Hilbert transform of the reflection spectrum was utilized to estimate grating parameters, and then the layer-peeling algorithm was used to obtain refined parameter values by the differential-evolution optimization process. Calculations for a fiber Bragg grating with wavelength chirp rate 2 nm/cm were obtained with an accuracy of $6{\times}10^{-5}nm/cm$ for the chirp rate and $3{\times}10^{-9}nm/cm$ for the index modulation, with much improved calculation speed and high reliability.

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.