• Title/Summary/Keyword: differential drive

Search Result 150, Processing Time 0.026 seconds

Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters (전동 스쿠터를 위한 DGPS 기반의 위치 추정 및 반 자율 주행 시스템 개발)

  • Song, Ui-Kyu;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.674-684
    • /
    • 2011
  • More and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.

Design and Implementation of Flux-Driven Waveguide Ferrite Phase Shifters (자속밀도 제어형 페라이트 도파관 변위기 설계 및 제작)

  • 김동석;박동철;이용희;김윤명
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.1
    • /
    • pp.3-10
    • /
    • 1992
  • Flux-drive waveguide phase shifter is designed by twin-slab model. Measured differential phase shifts are smaller than the theoretical values by 8-9 percents. Measured insertion loss and VSWR of the phase shifter using TT73-2200 ferite are less than 0.45dB and 1.25 respectively, within pass band. The phase shifter using double-setup transformer shows wider bandwidth characteristics. Finally the reduced-height waveguide phase shifter using TT3-2900 ferrite shows very efficient suppression of higher-oreder modes.

  • PDF

Application of Nonlinear Feedback Control to an Articulated Manipulator (수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command (조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계)

  • Seo, Hyoungkyu;Park, Jaeyoung;Ahn, Jung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

Automated Technology for Pipelines Inspection Using Inpipe Robot (배관 로봇을 이용한 배관 검사 자동화 기술)

  • Roh, Se-Gon;Choi, Hyouk-Ryeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.261-266
    • /
    • 2002
  • Up to now a wide variety of researches on inpipe robots for inspection have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. The robot for the inspection of pipelines should freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it should be able to travel along reducers and elbows, and especially the capability for steering in branches is essential to it. In this report, citical points and technologies in the development of the inpipe inspection robots are introduced and inpipe robots developed for last several years are introduced.

Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit (이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법)

  • Yang, Gil Jin;Choi, Byoung Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.

Shape Optimization for Enhancing the Performance of an Inducer for the Main Hydraulic Pump in a Rotary Wing Aircraft (회전익 항공기 주유압펌프용 인듀서 성능 향상을 위한 형상최적설계)

  • Kim, Hyogyeum;Heo, Hyeungseok;Park, Youngil;Lee, Changdon
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, in order to prevent cavitation in a variable swash-plate type hydraulic pump, a basic model impeller has been applied to a new pump, and the impeller shape has been optimized through flow analysis. Based on the analysis results, we could propose an impeller shape with high efficiency and low possibility of cavitation in comparison with the basic model. The simplification of the basic shape of the impeller of the hydraulic pump was performed in three parts in the order of hub shape, wing, and curvature, and eight design parameters were defined to satisfy the design requirement. Compared with the initial model of the impeller, when the differential pressure of the optimum model increased, the efficiency was improved. It achieved the goal of design improvement because cavitation did not occur under the rated operating conditions.

Development of Traction Unit for 2-motor Driven Electric Vehicle

  • Park, Jung-Woo;Koo, Dae-Hyun;Kim, Jong-Moo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.950-954
    • /
    • 1998
  • This paper describes a development of traction unit for 2-motor driven electric vehicle (EV). The traction unit is consisted with an interior permanent magnet synchronous motor (IPMSM), a reduction gear and an inverter for electric vehicle that is driven by 2 motors without differential gear. For traction unit, prototype IPMSM and inverter have been developed. The IPMSM was designed by CAD program that was developed with both equivalent circuit method and FEM. Also the inverter was developed to drive 2 motors with 6 legs IGBT switches in a control board. The vector control algorithm was implemented with maximum torque control method in the constant torque region and field weakening control method in the constant power region considering inverter capacity. To verify that the traction unit is more high efficiency and has more high power density than a traction unit with induction motor with the same power, we would like to show the results about the design and analysis of the IPMSM and the experiment results about the traction unit.

  • PDF

Development of Localization and Pose Compensation for Mobile Robot using Magnetic Landmarks (마그네틱 랜드마크를 이용한 모바일 로봇의 위치 인식 및 위치 보정 기술의 개발)

  • Kim, Bum-Soo;Choi, Byung-June;You, Won-Suk;Moon, Hyung-Pil;Koo, Ja-Choon;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.186-196
    • /
    • 2010
  • In this paper, we present a global localization and position error compensation method in a known indoor environment using magnet hall sensors. In previous our researches, it was possible to compensate the pose errors of $x_e$, $y_e$, ${\theta}_e$ correctly on the surface of indoor environment with magnets sets by regularly arrange the magnets sets of identical pattern. To improve the proposed method, new strategy that can realize the global localization by changing arrangement of magnet pole is presented in this paper. Total six patterns of the magnets set form the unique landmarks. Therefore, the virtual map can be built by using the six landmarks randomly. The robots search a pattern of magnets set by rotating, and obtain the current global pose information by comparing the measured neighboring patterns with the map information that is saved in advance. We provide experimental results to show the effectiveness of the proposed method for a differential drive wheeled mobile robot.

A Study on the Indoor Navigation of Guiding Robot for the Visually Impaired Using Sensor Fusion (센서 퓨전을 이용한 시각 장애인 유도 로봇의 실내주행 연구)

  • Jang, Chul-Woong;Jung, Ki-Ho;Yeom, Moon-Jin;Shim, Hyun-Min;Hong, Yeong-Ki;Shim, Jae-Hong;Lee, Eung-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.923-924
    • /
    • 2006
  • In this paper, we propose the sensor fusing method for the obstacle avoidance of guiding robot for the visually impaired In our system, we acquire obstacles distances information using ultrasonic sensors, and its width is acquired by image sensor. We also compute avoidance angle using are distance and width information gained by sensor. After the robot avoid the obstacle by computed angle, the robot returns to its original path using odometry. The robot consists of the SA1110-based controller, sensory part using sonar array and image sensor, and motion part using differential drive for climbing stairs. This system use the embedded linux for OS, and also is developed by the QT/Embedded for GUI.

  • PDF