• Title/Summary/Keyword: differential conductivity

Search Result 132, Processing Time 0.025 seconds

Effect of Salt Concentration on the Glass Transition Temperature and Ionic Conductivity of Poly(ethylene glycol)-Polyurethane/$LiClO_4$ Complexes

  • Huh, Pil-Ho;Park, Myung-Geun;Jo, Nam-Ju;Lee, Jin-Kook;Lee, Jang-Oo;Wongkang Yang
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.422-426
    • /
    • 2004
  • Solid polymer electrolytes based on poly(ethylene glycol)-polyurethane (PEG-PU) complexed with LiClO$_4$ salt have been prepared by the solvent casting method. A PEG-PU material (PEG:4,4'-diphenylmethane diisocyanate: l,4-butanediol = 1:2:1) was synthesized through a typical two-step condensation reaction. We investigated the effects of the salt concentration on the ionic conductivity ($\sigma$) and the glass transition temperature (T$_{g}$ ) of the complex electrolytes by using alternating current impedance spectroscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The measured values of both $\sigma$ and T$_{g}$ exhibited similar tendencies in that they had maxima within the range studied, probably because of two opposite effects, i.e., the increased number of carrier ions and the decreased chain mobility (or increased T$_{g}$ ) caused by the increase in the salt concentration. The highest conductivity, on the order of 2.43 ${\times}$ 10$^{6}$ S$cm^{-1}$ /, was obtained at an [O]/[Li$^{+}$] ratio of ca. 16 (0.92 ㏖ salt per kg of matrix polymer).

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Thermophysical Properties of $UO_2$ Fuel Materials

  • Lee, Hung-Joo;Kim, Chul-Whan
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 1976
  • A flash method for measuring the unknown thermal property (the density, specific heat, or thermal diffusivity could be chosen as unknown) is described. The thermal diffusivity of UO$_2$ fuel samples is obtained from room temperature (300 K) to high temperature (1400 K). The specific heat is measured using a commercially available differential scanning calorimeter from room temperature to 500 K. The thermal conductivity of UO$_2$ fuel samples is calculated from the density, thermal diffusivity, and specific heat at constant pressure. The present results are in complete agreement with the usual trends for the thermal conductivity of dielectric materials, in which impurity levels are very important at low temperatures but become relatively unimportant at high temperatures. In addition, the thermal diffusivity values at room temperature are reexamined by measuring the thermal diffusivity of several UO$_2$ fuel samples with same level of doped Gd$_2$O$_3$.

  • PDF

P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS (메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질)

  • Seo, Young-ju;Cha, Jong-Ho;Lee, Huen;Ha, Yong-Joon;Koh, Jeong Hwan;Lee, Chulhaeng
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.170-174
    • /
    • 2008
  • ZnS-polymer gel films were prepared with incorporating mesoporous ZnS synthesized by surfactant-assisted templating process and poly (vinylidene fluoride)-hexafluoropropylene copolymer (P(VDF-HFP)) in order to observe the variation of ionic conductivities according to the various weight ratios between ZnS and P(VDF-HFP). Ionic conductivities for each gel electrolyte were measured with increasing temperature. As a result, ionic conductivities increased with increasing the amount of ZnS and temperature. In particular, the films with 20 and 25 wt% ZnS were found that they possessed the high ionic conductivity of approximately $10^{-4}Scm^{-1}$ at room temperature. However, above 20 wt% of ZnS, the enhancement of ionic conductivity was not observed. For the characterization of ZnS and the gel electrolyte, XRD (x-ray diffractometer), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), FT-IR (fourier transform-infrared spectrometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were employed. Ionic conductivities were measured by a.c. impedance method.

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

Preparation and Electrochemical Characteristics of Polymer Electrolyte Based on MCM-41/Poly(ethylene oxide) Composites (MCM-41/Po1y(ethylene oxide) 복합체로 구성된 고분자 전해질의 제조와 전기화학적 특성)

  • Kim Seok;Kang Jin-Young;Lee Sung-Goo;Lee Jae-Rook;Park Soo-Jin
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.403-407
    • /
    • 2005
  • In this work, the solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous mobil crystalline material-41 (MCM-41), and lithium salt, are prepared in order to investigate the influence of MCM-41 contents on the ionic conductivity of the composites. The crystallinity of the SPE composites was evaluated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The ionic conductivity of the SPE composites was measured by the frequency response analyzer (FRA). As a result, the addition of MCM-41 into the polymeric mixture prohibited the growth of PEO crystalline domain due to the mesoporous structures of the MCM-41. The $P(EO)_{16}LiClO_4$/MCM-41 electrolytes show an increased ion conductivity as a function of MCM-41 content up to 8 $wt\%$ and a slightly decreased conductivity over 8 $wt\%$. These ion conductivity characteristics are dependent on a change of polymer crystallinity in the presence of MCM-41 system.

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures (콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법)

  • Jung, Bong-Gu;Kim, Boyoung;Kang, Jun Won;Hwang, Jin-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

Preparation and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Graphene Nanocomposites (3-히드록시부티레이트-3-히드록시발러레이트 공중합체/그래핀 나노복합체의 제조 및 물성)

  • You, Eun Jung;Lee, Dan Bi;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.108-115
    • /
    • 2015
  • In the present work, we investigated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene nanocomposites. The electrical, hydrophobic properties and thermal properties of the nanocomposite films having different graphene contents were investigated. The scanning electron microscopy (SEM) morphology showed good dispersion of graphene layers in the PHBV matrix. Based on the X-ray diffraction and differential scanning calorimetry, the addition of graphene increased the crystallinity of PHBV. Thermal stability, hydrophobicity, and electrical conductivity of the nanocomposites were increased with increasing the graphene contents.

The Effect of CTAB on the Citrate Sol-gel Process for the Synthesis of Sodium Beta-Alumina Nano-Powders

  • Wang, Zaihua;Li, Xinjun;Feng, Ziping
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1310-1314
    • /
    • 2011
  • Sodium beta-alumina (SBA) nano-powders were synthesized by the citrate sol-gel process, and the effects of the cationic surfactant n-cetyltrimethylammonium bromide surfactant (CTAB) were investigated. The structure and morphology of the nano-powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques, respectively. The effects of CTAB on the citrate sol-gel process and the SBA formation were investigated by thermo gravimetric/differential thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR). The conductivity of ceramic pellets of SBA was measured by electrochemical impedance spectroscopy (EIS). The results showed that the CTAB inhibited the agglomeration of SBA powders effectively and consequently decreased the crystallization temperature of SBA, about $150^{\circ}C$ lower than that of the sample without CTAB. The measured conductivity of SBA was $1.21{\times}10^{-2}S{\cdot}cm^{-1}$ at $300^{\circ}C$.

The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery (리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향)

  • Park, Soo-Gil;Park, Jong-Eun;Lee, Hong-Ki;Lee, Ju-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF