• Title/Summary/Keyword: differential Sylvester equation

Search Result 3, Processing Time 0.015 seconds

Eigenstructure Assignment for Linear Time-Varying Systems: a Differential Sylvester Equation Approach (미분 Sylvester 방정식을 이용한 선형 시변 시스템의 고유구조 지정기법)

  • 최재원;이호철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.777-786
    • /
    • 1999
  • This work is concerned with the assignment of the desired eigenstructure for linear time-varying systems such as missiles, rockets, fighters, etc. Despite its well-known limitations, gain scheduling control appeared to be the focus of the research efforts. Scheduling of frozen-time, frozen-state controller for fast time-varying dynamics is known to be mathematically fallacious, and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper, ⅰ) we introduce a differential algebraic eigenvalue theory for linear time-varying systems, and ⅱ) we also propose an eigenstructure assignment scheme for linear time-varying systems via the differential Sylvester equation based upon the newly developed notions. The whole design procedure of the proposed eigenstructure assignment scheme is very systematic, and the scheme could be used to determine the stability of linear time-varying systems easily as well as provides a new horizon of designing controllers for the linear time-varying systems. The presented method is illustrated by a numerical example.

  • PDF

Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets (르장드르 웨이블릿을 이용한 쌍일차 시스템 수치 해석)

  • Kim, Beomsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.827-833
    • /
    • 2013
  • In this paper, an efficient computational method is presented for state space analysis of bilinear systems via Legendre wavelets. The differential matrix equation is converted to a generalized Sylvester matrix equation by using Legendre wavelets as a basis. First, an explicit expression for the inverse of the integral operational matrix of the Legendre wavelets is presented. Then using it, we propose a preorder traversal algorithm to solve the generalized Sylvester matrix equation, which greatly reduces the computation time. Finally the efficiency of the proposed method is discussed using numerical examples.

Wavelet-based Analysis for Singularly Perturbed Linear Systems Via Decomposition Method (웨이블릿 및 시스템 분할을 이용한 특이섭동 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1270-1277
    • /
    • 2008
  • A Haar wavelet based numerical method for solving singularly perturbed linear time invariant system is presented in this paper. The reduced pure slow and pure fast subsystems are obtained by decoupling the singularly perturbed system and differential matrix equations are converted into algebraic Sylvester matrix equations via Haar wavelet technique. The operational matrix of integration and its inverse matrix are utilized to reduce the computational time to the solution of algebraic matrix equations. Finally a numerical example is given to demonstrate the validity and applicability of the proposed method.