• Title/Summary/Keyword: differentiable

Search Result 196, Processing Time 0.027 seconds

A Study on On-line modeling of Fuzzy System via Extended Kalman Filter (확장 칼만필터를 이용한 온라인 퍼지 모델링 알고리즘에 대한 연구)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.250-258
    • /
    • 2003
  • In this paper, an explanation regarding on-line identification of a fuzzy system is presented. The fuzzy system to be identified is assumed to be in the type of singleton consequent parts and be represented by a linear combination of fuzzy basis functions. For on-line identification, squared-cosine membership function is introduced to reduce the number of parameters to be identified and make the system consistent and differentiable. Then the parameters of the fuzzy system are identified on-line by the gradient search method and Extended Kalman Filter. Finally, a computer simulation is peformed to illustrate the validity of the suggested algorithms.

A study on the robustness and optimality of a LQ computer control for a manipulator with flexible joints (유연관절을 갖고 있는 로보트를 위한 LQ 컴퓨터 제어의 강인성과 최적성에 관한 연구)

  • 김진화;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.149-154
    • /
    • 1990
  • In this paper, simulation results of a robust digital tracking controller on a robotic manipulator are presented. The objective is to follow a ramp reference input with zero steady state error in the presence of a disturbance and system parameter variations. Some of the difficulties are caused by the Coulomb frictions, the disturbance due to the gravitational pull, the spring effect of a link between the drive motor and the manipulator arm. Another difficulty is that, because of the non-differentiable Coulomb friction, the digital control system cannot be represented as a discrete system. It is thus necessary to design the controller based on a discrete-continuous hybrid model. The controller is based on feeding back the state variables and augmenting the system by addition discrete integrators. The feedback gain parameters are obtained by applying the quadratic optimal control theory and then choosing the new weighting matrices to eliminate the limit cycle by using the describing function method for hybrid system.

  • PDF

FIRST PASSAGE PROBLEM FOR WIENER PATHS CROSSING DIFFERENTIABLE CURVES

  • Jang, Yu-Seon;Kim, Sung-Lai;Kim, Sung-Kyun
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.475-484
    • /
    • 2005
  • Let W(t) be a Wiener path, let $\xi\;:\;[0,\;{\infty})\;\to\;\mathbb{R}$ be a continuous and increasing function satisfying $\xi$(0) > 0, let $$T_{/xi}=inf\{t{\geq}0\;:\;W(t){\geq}\xi(t)\}$$ be the first-passage time of W over $\xi$, and let F denote the distribution function of $T_{\xi}$. Then the first passage problem has a unique continuous solution as following $$F(t)=u(t)+{\sum_{n=1}^\infty}\int_0^t\;H_n(t,s)u(s)ds$$, where $$u(t)=2\Psi(\xi(t)/\sqrt{t})\;and\;H_1(t,s)=d\Phi\;(\{\xi(t)-\xi(s)\}/\sqrt{t-s})/ds\;for\;0\;{\leq}\;s.

The deformation space of real projective structures on the $(^*n_1n_2n_3n_4)$-orbifold

  • Lee, Jungkeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.549-560
    • /
    • 1997
  • For positive integers $n_i \geq 2, i = 1, 2, 3, 4$, such that $\Sigma \frac{n_i}{1} < 2$, there exists a quadrilateral $P = P_1 P_2 P_3 P_4$ in the hyperbolic plane $H^2$ with the interior angle $\frac{n_i}{\pi}$ at $P_i$. Let $\Gamma \subset Isom(H^2)$ be the (discrete) group generated by reflections in each side of $P$. Then the quotient space $H^2/\gamma$ is a differentiable orbifold of type $(^* n_1 n_2 n_3 n_4)$. It will be shown that the deformation space of $Rp^2$-structures on this orbifold can be mapped continuously and bijectively onto the cell of dimension 4 - \left$\mid$ {i$\mid$n_i = 2} \right$\mid$$.

  • PDF

GENERALIZED SOLUTIONS OF IMPULSIVE CONTROL SYSTEMS CORRESPONDING TO CONTROLS OF BOUNDED VARIATION

  • Shin, Chang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.581-598
    • /
    • 1997
  • This paper is concerned with the impulsive control problem $$ \dot{x}(t) = f(t, x) + g(t, x)\dot{u}(t), t \in [0, T], x(0) = \overline{x}, $$ where u is a possibly discontinuous control function of bounded variation, $f : R \times R^n \mapsto R^n$ is a bounded and Lipschitz continuous function, and $g : R \times R^n \mapsto R^n$ is continuously differentiable w.r.t. the variable x and satisfies $\mid$g(t,\cdot) - g(s,\cdot)$\mid$ \leq \phi(t) - \phi(s)$, for some increasing function $\phi$ and every s < t. We show that the map $u \mapsto x_u$ is Lipschitz continuous when u ranges in the set of step functions whose total variations are uniformly bounded, where $x_u$ is the solution of the impulsive control system corresponding to u. We also define the generalized solution of the impulsive control system corresponding to a measurable control functin of bounded variation.

  • PDF

EIGENVALUES FOR THE SEMI-CIRCULANT PRECONDITIONING OF ELLIPTIC OPERATORS WITH THE VARIABLE COEFFICIENTS

  • Kim, Hoi-Sub;Kim, Sang-Dong;Lee, Yong-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.627-645
    • /
    • 2007
  • We investigate the eigenvalues of the semi-circulant preconditioned matrix for the finite difference scheme corresponding to the second-order elliptic operator with the variable coefficients given by $L_vu\;:=-{\Delta}u+a(x,\;y)u_x+b(x,\;y)u_y+d(x,\;y)u$, where a and b are continuously differentiable functions and d is a positive bounded function. The semi-circulant preconditioning operator $L_cu$ is constructed by using the leading term of $L_vu$ plus the constant reaction term such that $L_cu\;:=-{\Delta}u+d_cu$. Using the field of values arguments, we show that the eigenvalues of the preconditioned matrix are clustered at some number. Some numerical evidences are also provided.

HYERS-ULAM-RASSIAS STABILITY OF THE BANACH SPACE VALUED LINEAR DIFFERENTIAL EQUATIONS y′ = λy

  • Miura, Takeshi Miura;Jung, Soon-Mo;Takahasi, Sin-Ei
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.995-1005
    • /
    • 2004
  • The aim of this paper is to prove the stability in the sense of Hyers-Ulam- Rassias of the Banach space valued differentialequation y' = λy, where λ is a complex constant. That is, suppose f is a Banach space valued strongly differentiable function on an open interval. If f is an approximate solution of the equation y' = λy, then there exists an exact solution of the equation near to f.

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE NEW METHODS FOR SOLUTION

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.31-48
    • /
    • 2007
  • The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on bypassing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable function $f(x+h)=E_{\alpha}(h^{\alpha}{D_x^{\alpha})f(x)$.

History and Development of Sphere Theorems in Riemannian Geometry (리만기하학에서 구면정리의 발전과 역사)

  • Cho, Min-Shik
    • Journal for History of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.23-35
    • /
    • 2011
  • The sphere theorem is one of the main streams in modern Riemannian geometry. In this article, we survey developments of pinching theorems from the classical one to the recent differentiable pinching theorem. Also we include sphere theorems of metric invariants such as diameter and radius with historical view point.

An Alternative Point-Matching Technique for Fredholm Integral Equations of Second Kind (제2종 Rredholm 적분방정식의 새로운 수식해법)

  • 이직열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 1985
  • An alternative technique (or the numerical solution of Fredholm integral equations of second kind is presented. The approximate solution is obtained by fitting the data in mixed form at knots in the region of the problem. To decrease the error in the numerical solution, cubic B-spline functions which are twice continuously differentiable at knots are employed as basis function. For a given example, the results of this technique are compared with those of Moment method employing pulse functions for basis function and delta functions for test function and found to br in good agreement.

  • PDF