• Title/Summary/Keyword: different shapes

Search Result 2,019, Processing Time 0.026 seconds

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

ANALYSIS OF THE FIT IN THE IMPLANT PROSTHESIS USING A LASER DISPLACEMENT METER AND THREE-DIMENSIONAL FINITE ELEMENT METHOD

  • Kwon Ho-Beom;Kim Yung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.611-624
    • /
    • 2001
  • A precise fit of the implant prosthesis is one of the most important factors in preventing mechanical complications. To analyze the degree of the misfit of implant prosthesis, a modal testing experiment was accomplished. And. to interpret the modal testing analysis mathematically, three-dimensional finite element models were established. In the experimental modal testing analysis, with a laser displacement meter, FFT analyzer, impact hammer, etc., natural frequencies of the models with various degree of prosthesis fit were determined after the frequency response function were calculated. In the finite element analysis, the natural frequencies and mode shapes of the models which simulated those of experimental modal testing were computed. The results were as follows: 1. Natural frequencies of the prosthesis-abutment were related to the contact state between components. 2. In the modal testing experiment, the natural frequencies increased from $50{\mu}m$ to $200{\mu}m$ gap and reached a plateau. 3. In the finite element analysis, the natural frequencies decreased gradually according to the in crease of the gap size. 4. In the finite element analysis, the mode shapes of model 1 with misfitting prosthesis showed different patterns from those without misfitting prosthesis. 5. The devices including a laser displacement meter used in this study were useful for measuring the natural frequencies of an implant prosthesis which had various degrees of fit.

  • PDF

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

A Study of Aspheric Mirror Optical Design to Improve Luminous Intensity Uniformity of LED Security Lights (LED 보안등의 광균일도 향상을 위한 비구면 Mirror형 광학 설계에 관한 연구)

  • Jung, In-Ho;Yoon, Cheol-Yong;Ye, In-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.114-119
    • /
    • 2011
  • There is a limit to technology of improving luminous intensity uniformity and glare, known as a weakness of existing LED lamp. Because of Using many LED, LED lamp not only waste energy but have bad effect on efficiency. Our goal is to develop security lights solution which is contented with suitable area in KS(Korean Industrial Standards) and to remove glare by combining asphere in optical system with different concept. To improve luminous intensity uniformity, a reflect mirror system was used after an aspheric optical system design for this study. We made a mirror and measured it after analysing luminance changes depend on aspheric shapes with simulation program to see if aspheric shapes effect luminance distribution. We made progress to find problems and improve them by comparing measured data and analysed data. This result of the study will contribute to industry of LED lighting through developing solution of emotional illumination of LED security lights by knowing the importance of reflectivity with this study and improving luminous intensity uniformity with solving the problem.

NUMERICAL STUDY ON SYNTHETIC-JET-BASED FLOW SUPPLYING DEVICE (합성제트 기반의 유량 공급 장치에 대한 수치적 연구)

  • Park, M.;Lee, J.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2015
  • Flow characteristics of synthetic jet based flow supplying devices have been computationally investigated for different device shapes. Jet momentum was produced by the volume change of a cavity by two piezoelectric-driven diaphragms. The devices have additional flow path compared with the original synthetic jet actuator, and these flow path changes the flow characteristics of synthetic jet actuator. Four non-dimensional parameters, which were functions of the shapes of the additional flow path, were considered as the most critical parameters in jet performance. Comparative studies were conducted to compare volume flow rate and jet velocity. Computed results were solved by 2-D incompressible Navier-Stokes solver with k-w SST turbulence model. Detailed computations revealed that the additional flow path diminishes suction strength of the synthetic jet actuator. In addition, the cross section area of the flow path has more influence over the jet performances than the length of the flow path. Based on the computational results, the synthetic jet based flow supplying devices could be improved by applying suitable shape of the flow path.

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes (차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구)

  • 이길성;백경윤;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF

Extension of indirect displacement estimation method using acceleration and strain to various types of beam structures

  • Cho, Soojin;Sim, Sung-Han;Park, Jong-Woong;Lee, Junhwa
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.699-718
    • /
    • 2014
  • The indirect displacement estimation using acceleration and strain (IDEAS) method is extended to various types of beam structures beyond the previous validation on the prismatic or near-prismatic beams. By fusing different types of responses, the IDEAS method is able to estimate displacements containing pseudo-static components with high frequency noise to be significantly reduced. However, the concerns to the IDEAS method come from possible disagreement of the assumed sinusoidal mode shapes to the actual mode shapes, which allows the IDEAS method to be valid only for simply-supported prismatic beams and limits its applicability to real world problems. In this paper, the extension of the IDEAS method to the general types of beams is investigated by the mathematical formulation of the modal mapping matrix only for the monitored substructure, so-called monitoring span. The formulation particularly considers continuous and wide beams to extend the IDEAS method to general beam structures that reflect many real bridges. Numerical simulations using four types of beams with various irregularities are presented to show the effectiveness and accuracy of the IDEAS method in estimating displacements.

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.

Analysis of Pattern Shape and Types for Non-woven Protective Coverall on Domestic Market (시판 부직포 전신 보호복의 패턴형상 및 유형분석)

  • Moon, Jeehyun;Jeon, Eunkyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.2
    • /
    • pp.273-286
    • /
    • 2016
  • Protective coveralls are very uncomfortable to work in comparison to ordinary top and bottom separated clothing. A pattern maker has to consider the size of the human body and human motion range when designing protective coverall patterns. It is difficult to produce well-fitted coveralls because of the lack of readymade patterns despite the increased need for protective coveralls at various jobs. Patterns are decomposed by unsewing 18 products in the domestic market to provide the fundamental information on developing patterns for protective coveralls. The characteristics and differences of pattern types are compared after grouping patterns with information taken from the analysis of the shapes and measurements of patterns from the acquired patterns. The results of the analysis showed that on-market protective coveralls were less curved but much linear when compared to ordinary clothing patterns; however, the breasts and crotch circumferences were very loose and bulky, which is quite different from the other all-in one style working clothes. For the pattern shapes, patterns are classified into waistline-seamed and bustline-seamed types. The result of the hierarchical cluster analysis with 27 measurement variables were classified into four groups. Types by shape and measurements were related to each other; therefore, we expect the information of each type to be used in developing protective clothing patterns.