• Title/Summary/Keyword: different shapes

Search Result 2,019, Processing Time 0.023 seconds

KINEMATIC OSCILLATIONS OF POST-CME BLOBS DETECTED BY K-COR ON 2017 SEPTEMBER 10

  • Lee, Jae-Ok;Cho, Kyung-Suk;Nakariakov, Valery M.;Lee, Harim;Kim, Rok-Soon;Jang, Soojeong;Yang, Heesu;Kim, Sujin;Kim, Yeon-Han
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.61-70
    • /
    • 2021
  • We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we find that all blobs except one show irregular "zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 km s-1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with different speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and fluid dynamic experiments. We find that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15-3.0) from fluid dynamic experiments of bluff spheres, while they are higher than those (0.15-0.25) from MHD simulations of cylindrical shapes. We thus find that blobs formed in a post-CME CS undergo kinematic oscillations caused by fluid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a bluff spherical shape with the background plasma in the post-CME CS.

A Study on the Difference between the Roots of (K)Hanbok and Hanfu (한복과 한푸의 차이점 분석에 관한 연구)

  • Kim, Jisu;Na, Youngjoo
    • Human Ecology Research
    • /
    • v.60 no.2
    • /
    • pp.273-287
    • /
    • 2022
  • (K)Hanbok, which is Korea's traditional clothing, differs from the Chinese Hanfu or Japanese Kimono. This study aims to understand the fundamental differences between (K)Hanbok and Hanfu. The Goryeo Dynasty (K)Hanbok, which was particularly popular in China, was established because the Ming Dynasty Hanfu and Chinese fashion were considerably influenced by the 'Koryo Yang'. Firstly, while (K)Hanbok is bulky, Hanfu of the Han Dynasty is characterized by forming a slim silhouette. Due to the climate of the Northern Hemisphere, (K)Hanbok shows a rich silhouette comprising multiple layers of inner pants and a pleated skirt over a voluminous underskirt. On the other hand, the Han's Hanfu creates a straight silhouette in the form of a wrap, revealing the contours of the body. The pleated skirt of the (K)Hanbok can use six to twelve width fabrics, depending on the social position; however, the Hanfu of the Han is a skirt without any pleats. Secondly, the clothing patterns, which have various shapes, are totally different in how they are made and sewn. The Korean (K)Hanbok is a two-piece separate, whereas the Chinese Hanfu style is a one-piece with a skirt. The short length of the (K)Hanbok jacket has a Sup which is cut and pasted allowing the front closure to overlap. Nevertheless, the Hanfu of the Han does not have this Sup because it is of a wrap-around, one-piece style and has an exceptionally large front, and wraps around at the waist which extends to the sides. Thirdly, the (K)Hanbok jacket has separate string Gorums for fastening, and an additional belt around the waist; however, in the case of Gorum, it is unnecessary for a wrapping style of Hanfu. Fourthly, Koreans as an agricultural horse-riding people, basically wore the trousers attached a comfortable gusset, while the Chinese Hanfu had no pants, but the Chinese wore Gaedanggo pants which exposed the hips, inevitably during the Warring States period.

Acquisition and Classification of ECG Parameters with Multiple Deep Neural Networks (다중 심층신경망을 이용한 심전도 파라미터의 획득 및 분류)

  • Ji Woon, Kim;Sung Min, Park;Seong Wook, Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.424-433
    • /
    • 2022
  • As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

Experimental study of cactus-like body shape on flow-induced vibration mitigation of clustered cylinders

  • Shi, Chen;Liu, Yang;Wang, Jialu;Chen, Fabo;Liu, Zhihui;Bao, Xingxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.194-207
    • /
    • 2021
  • Vortex-Induced Vibration (VIV) is a major contributor to the fatigue damage of marine risers which are often arranged in an array configuration. In addition to helical strakes and fairings, studies have been strived in searching for possible VIV suppression techniques. Inspired by giant Saguaro Cacti, flexible cylinders of different cactus-shaped cross sections were tested in a water tunnel facility, and test results showed that cactus-like body shapes reduced VIV responses of a cylinder at no cost of significant increase of drag. A series of experiments were conducted on a pair of two tandem-arranged flexible cylinders and an array of four cylinders in a square configuration to investigate the effects of wake on the dynamic responses of cylinders and the VIV mitigation effectiveness of the cactus-like body shape. Results showed that the cylinders in a square configuration, either at the upstream or downstream positions, might have larger dynamic responses than those of a single cylinder. The cactus-like body shape could mitigate VIV responses of cylinders at upstream positions in an array configuration; however, similar to helical strakes, the mitigation efficiency was reduced on downstream cylinders. Note that the cactus-like cross-sectional shape investigated was not optimized for VIV suppression. The present study indicates that the modification of the cross-sectional shape of a cylinder to a well-designed cactus-like shape may be used as an alternative technique to mitigate the VIV of marine risers.

Development of Photonic Quantum Ring Device with Different Oscillation Characteristics for Driving with Secondary Battery (이차전지로 구동하기 위한 다른 발진 특성을 나타내는 조명용 광양자테 소자 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.341-349
    • /
    • 2021
  • We studies to verify results similar to those of previous experiments, and their potential as a lighting device through optical characteristics experiments and resonance and optical characteristics simulations of array devices. The photonic quantum ring (PQR) device having a mesa diameter of 40 ㎛ and an internal hole diameter of 3 ㎛ was fabricated. Through the near-field observation of the fabricated device, it was found that the PQR device operates even at ㎂, and also that the mesa and hole devices are driven independently of each other. As a result of measuring the wavelength spectrum of the device according to the location, the coupling phenomenon due to mesa and holes was confirmed.

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.

Heat Transfer Depending on 3D Printing Material and Shape for Protector Development (3D 프린팅 보호대 개발을 위한 재료와 구조에 따른 열전달 평가)

  • Okkyung Lee;Soyoung Kim;Yejin Lee;Heeran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.4
    • /
    • pp.497-507
    • /
    • 2023
  • This study measured the effect 3D printing products comprised of different materials and shapes on heat transfer in clothing to derive fundamental data on thermal comfort among clothing comfort. The variables were three types of material (EVA foam, TPU-10%, TPU-10%+EVA), two types of shape (without holes, with holes), and two types of covers(without cover, with cover). All samples (12 types) prepared by combining these variables were placed on the hot plate set at 36℃, and the surface temperature was measured at three points for 10 minutes. The surface temperature change was dependent on the material, shape, and cover of the sample. The sample printed with TPU exhibited higher temperature transfer compared to the EVA foam sample after 10 mins. In addition, the temperature transfer was better when there were holes, and rate decreased when the sample was covered with fabric. We confirmed that material selection of the pad and thermal conductivity of the cover are extremely important in solving thermal stress to the human body caused by functional clothing with protectors. Additionally, as the protector, it is recommended to design the outer shell with a passage, such as a hole, to allow the rapid transfer of heat to the external environment.

Unsteady galloping of sharp-edged bluff bodies: experimental observations on the effect of the wind angle of attack

  • Chen, Cong;Dai, Bingyu;Wieczorek, Niccolo;Unglaub, Julian;Thiele, Klaus
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.255-268
    • /
    • 2022
  • Light-weight or low-damped structures may encounter the unsteady galloping instability that occurs at low reduced wind speeds, where the classical quasi-steady assumption is invalid. Although this unsteady phenomenon has been widely studied for rectangular cross sections with one side perpendicular to the incidence flow, the effect of the mean wind angle of attack has not been paid enough attention yet. With four sectional models of different side ratios and geometric shapes, the presented research focuses on the effect of the wind angle of attack on unsteady galloping instability. In static tests, comparatively strong vortex shedding force was noticed in the middle of the range of flow incidence where the lift coefficient shows a negative slope. In aeroelastic tests with a low Scruton number, the typical unsteady galloping, which is due to an interaction with vortex-induced vibration and results in unrestricted oscillation initiating at the Kármán vortex resonance wind speed, was observed for the wind angles of attack that characterize relatively strong vortex shedding force. In contrast, for the wind angles of attack with relatively weak shedding force, an "atypical" unsteady galloping was found to occur at a reduced wind speed clearly higher than the Kármán-vortex resonance one. These observations are valid for all four wind tunnel models. One of the wind tunnel models (with a bridge deck cross section) was also tested in a turbulent flow with an intensity about 9%, showing only the atypical unsteady galloping. However, the wind angle of attack with the comparatively strong vortex shedding force remains the most unfavorable one with respect to the instability threshold in low Scruton number conditions.

Formation of Microlens Array via a Modified LIGA Process: Molding and Modeling (변형 LIGA 공정을 이용한 마이크로 렌즈 어레이 개발: 몰딩 및 모델링)

  • Kim, D. S.;Lee, H. S.;S. S. Yang;Lee, B.K.;Lee, S.K.;T. H. Kwon;Lee, S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.465-469
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for microlens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of microlens which depend on the thermal treatment. For the replication of microlens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of microlenses. Fabricated microlenses showed good surface roughness with the order of 1 nm.

  • PDF