• Title/Summary/Keyword: different plant organs

Search Result 81, Processing Time 0.023 seconds

Identification of the Major Volatile Components from Different Plant Organs of Foeniculum vulgare Mill.

  • Chung, Hae-Gon;Bang, Jin-Ki;Kim, Geum-Soog;Seong, Nak-Sul;Kim, Seong-Min
    • 한국약용작물학회지
    • /
    • 제11권4호
    • /
    • pp.274-278
    • /
    • 2003
  • The various plant organs of fennel (Foeniculum vulgare Mill.) were investigated to identify their volatile components using Dynamic Headspace (purge & trap). They showed slight differences concerning the volatile components both qualitatively and quantitatively. Results revealed that trans-anethole (12.65%) was the major compound in the leaf. The highest compound was ${\alpha}-pinene$ (28.78%), and trans-anethole (7.90%) was highly detected in the stem. The maximum values were 5.64, 4.59, 1.58, 1.51, and 1.04% for ${\alpha}-pinene,\;{\gamma}-terpinene,\;{\beta}-pinene$, 1,8-cineol and fenchone, respectively in the flower. However, very little trans-anethole was detected (0.27%) in the flower. From these results, it was suggested that the major components were different depending on the plant organs. However it was demonstrated that the related plant organs like flower-fruit and leaf-stem contained the similar components.

카드뮴에 오염된 토양에서 생장한 애기장대의 식물기관에 축적된 카드뮴 농도 (Accumulated Concentration of Cadmium in the Plant Organs of Arabidopsis thaliana Grown in the Soil Contaminated with Cadmium)

  • 박종범
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1015-1021
    • /
    • 2008
  • This study was performed to examine the accumulated concentrations (conc.) of cadmium (Cd) in the organs of Arabidopsis thaliana grown in the soil with different conc. of Cd. The official standard conc. of Cd of pollutant exhaust notified by the Korean ministry of environment (0.1 mg/L) and ten times higher (1 mg/L) and fifty times higher (5 mg/L) conc. and no Cd in the soil as control were used for this investigation. The results showed that accumulated conc. of Cd in the stems of plant grown in the soil with different conc. (0.1, 1 and 5 mg/L) were increased 9%, 24% and 286% respectively, compared with normal plant stem. The accumulated conc. of Cd in the leafs of plant gown in the soil with official standard conc. and conc. ten times higher and conc. fifty times higher were increased 3%, 22% and 453%, respectively, compared with normal plant leaf. The accumulated conc. of Cd in the root of plant grown in the soil with 0.1 and 1 mg/L conc. of Cd were increased 6%, 19%, respectively, compared with normal plant root. However, it was observed about 84% of increased accumulation of the Cd in the root of plant, when highest (5 mg/L) conc. was used. The accumulated conc. of Cd in the different organs of Arabidopsis thaliana were increased according to increase of Cd conc. in the soil. When official standard conc. and ten times higher conc. of Cd were used, the accumulated conc. of Cd increased average 6%, 21%, respectively, compared with normal plant organ, and the accumulated conc. of Cd between leaf, stem and root were not significant. However, the accumulated conc. of Cd in the plant organs gown in the conc. fifty times higher were increased about 285%, compared with normal plant. In addition, the accumulated conc. of Cd in different organs of Arabidopsis thaliana exhibited wide differences between organs, that is, stem was increased 118% than root, leaf was increased 256%, 64% than root and stem, respectively. These results show that accumulated conc. of Cd in Arabidopsis thaliana with highest (5 mg/L) conc. of Cd in soil, were much higher in the leaf than the stem or root in proportion to the conc. of Cd contaminated within the soil.

저년생 인삼의 잠아 및 화서형성에 관한 연구 (Study on the Forulation of Dormancy Bud and Inflorescence in Young Ginseng Plant)

  • 안상득;김요태
    • Journal of Ginseng Research
    • /
    • 제11권2호
    • /
    • pp.111-117
    • /
    • 1987
  • 저년생 인삼의 잠아 및 화기형성시기와 양상은 고년생 인삼의 이차적인 양상과 상이하기 때문에 1년생 묘삼의 잠아발달 및 다식된 2년생 인삼의 화기형성과정을 조사관찰하였던 바 그 결과를 요약하면 다음과 같다. 1. 2년생 이상의 인삼 잠아조직은 4월중순경 분제조직의 조기포분제로 시작하는데 1년생 묘삼에서는 유근발근시인 3월 하순경 시작하는 것으로 추측되었으며 잠아의 위치는 자엽간 줄기하단 문부위에 생성되었다. 2. 3년생 이상의 인삼 화기분화는 전년도 형성된 뇌두조직내에서 형성되지만 2년생 인삼의 화기는 줄기선단 엽병사이의 경단분제조직에서 분제세포의 분열과 함께 분화, 형성되었다.

  • PDF

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • 제5권3호
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2003년도 식물바이오벤처 페스티발
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

Family of floral homeotic genes (MADS-box genes) expressed in early flower Panax genseng

  • Yoon, Sunha;Yoon, Euisoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.15-15
    • /
    • 2002
  • In higher dicotyledonous plants, the floral organs are arranged in four different whorls, containing sepals, petals, stamens and carpels. petals, stamens and carpels. The specification of floral organ identity is explained by the ABC model (Weigel and Meyerowitz 1994). Expression of an A-function gene specifies sepal formation in whorl 1. the combination of A-and B-function genes specifies the formation of petals in whorl 2, B-and C-function genes spesify stamen formation in whorl 3, and expression of the C-function alone determines the formation of carpels in whorl 4. A-. B-, C-function genes have been isolated from many plant species and most of them belong to the family of MADS-box genes encoding transcription factor. In contrast to the flower of higher dicots, the perianths of genseng plants have three whorls of almost identical petaloid organs. van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. In this model, B-function genes are expressed in whorl 1 as well as whorl 2 and 3, theefore the organs of whorl 1 and whorl 2 have the same petaloid structure. They proposed this model with the molphological data of wild type and mutant flowers of tulip, however, there are no molecular data.(중략)

  • PDF

Family of floral homeotic genes (MADS-box genes) expressed in early flower Panax genseng

  • Yoon, Sunha;Yoon, Euisoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 심포지엄
    • /
    • pp.98-98
    • /
    • 2002
  • In higher dicotyledonous plants, the floral organs are arranged in four different whorls, containing sepals, stamens and carpels. petals, stamens and carpels. The specification of floral organ identity is explained by the ABC model (Weigel and Meyerowitz 1994). expression of an A-function gene specifies sepal formation in whorl 1. the combination of A-and B-function genes specifies the formation of petals in whorl 2, B-and C-function genes spesify stamen formation in whorl 3, and expression of the C-function alone determines the formation of carpels in whorl 1. A-, B-, C-function genes have been isolated from many plant species and most of them belong to the family of MADS-box genes encoding transcription factor. In contrast to the flower of higher dicots, the perianths of genseng plants have three whorls of almost identical petaloid organs. van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. In this model, B-function genes are expressed in whorl 1 as well as whorl 2 and 3, theefore the organs of whorl 1 and whorl 2 have the same petaloid structure. They proposed this model with the molphological data of wild type and mutant flowers of tulip, however, there are no molecular data. To date, B-function genes were isolated several grass plants, rice, wheat and maize. However, grass plants have highly derived flowers, without well-developed perianths. To find out how the ABC model has to be modified for the Genseng plants, we have cloned and characterized orthologs of A-, B-, C-function genes from genseng.

  • PDF

Variation of the Essential oil and Main Component from Different Origin of Levisticulum officinale Koch

  • Chung, Hae-Gon;Kim, Seong-Min;Nemeth, E.
    • 한국약용작물학회지
    • /
    • 제10권4호
    • /
    • pp.298-302
    • /
    • 2002
  • The essential oils were isolated by hydrodistillation and their composition determined capillary GC method with standards. The essential oil content showed significant differences between the two populations on the vegetative organs. The essential oil level of the leaves and roots was considerably higher in the Korean population at full flowering and waxy ripening stage but essential oil content of the roots was significantly higher in the Hungarian taxon at leaf rosette stage. We observed the essential oil accumulation tendency was mianly dependent on plant organs and intra-specific taxon during the vegeation period. Butylidene-phthalide was proved to be the main component of the oil in both population roots (50.9-73.3%), while dimethyl-acetate was showed as a major compound on the over-ground parts (56.7-62.0%). The qualitative composition of the essential oil in the reproductive organs concerning the identified compounds was the same as the vegetative parts with the main component ${\alpha}-phellandrene$ (4.8-28.1%) and butylidene-phtalide (9.7-16.1%), The quantitative composition showed some changes during the ontogenesis phases. Most characteristic ones are the decreasing proportion of dimethyl-acetate (from 7.3% to 1.1%) and the appearance of ${\alpha}-pinene$ (from 0.5% to 1.5%) only after fruit setting in both population.

삼백초의 생육 시기 및 부위별 성분 함량 비교 (Component Comparison in Different Growth Stages and Organs of Saururus chinensis $B_{AILL}$.)

  • 이성태;박정민;이희경;김만배;조주식;허종수
    • 한국약용작물학회지
    • /
    • 제8권4호
    • /
    • pp.312-318
    • /
    • 2000
  • 약용작물은 재배 환경이나 재배 년수, 생육시기 , 부위별로 약리성분 함량에 차이가 많은데, 본 연구에서 해독, 소종, 소변불리, 간염, 황달등의 치료에 효과가 있는 삼백초를 생육 시기별 및 부위별로 유효성분 함량을 분석한 결과는 다음과 같다. 생육 시기별 quercetin, quercitrin 및 tannin 함량은 생육초기에 가장 높았으며, 개화기 전까지 감소하다가 개화기 이후로 약간 증가 하였다. 7월 26일 수확했을 때 quercetin, quercitrin 및 tannin함량은 각각 5.72, 5.45g/kg 및 1.5%였다. 부위별 유효성분을 분석 한 결과 quercetin은 횐잎에서 함량이 가장 높았고, quercitrin은 잎에서 가장 높았으며, tannin은 꽃에서 가장 높았다. 부위별 무기성분 함량은 꽃에서 K, Ca, Mg, Cu, Zn의 함량이 가장 많았고, 횐잎에서는 K, Zn의 함량이 비교적 많았으며, 잎에서는 Fe가 가장 많았고 뿌리 에서 는 Na가 가장 많았다.

  • PDF

Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato

  • Islam, Mohammad Saiful;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.611-616
    • /
    • 2009
  • We investigated the expression pattern of dehydration responsive element-binding protein-3 in tomato under different abiotic stresses. Full length LeDREB3 cDNA was isolated from tomato plant, followed by phylogenetic analysis based on deduced amino acid sequences that revealed significant sequence similarity to DREB proteins belonging to diverse families of plant species. Southern blot analysis showed duplicate copies of LeDREB3 in the tomato genome while organ-specific expression profiling indicated constitutive expression of LeDREB3 in all tested organs, which was particularly strong in flower. LeDREB3 expression was significantly induced by Nacl, drought, low temperature and $H_2O_2$. Moreover, LeDREB3 was slightly regulated by treatment with ABA and MV. These observations suggest that the LeDREB3 gene may be involved in the response of the tomato plant to stress.