• Title/Summary/Keyword: different method of estimation and applications

Search Result 90, Processing Time 0.022 seconds

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

Regional Optimization of NeQuick G Model for Improved TEC Estimation (NeQuick G의 TEC 예측 개선을 위한 지역 최적화 기법 연구)

  • Jaeryoung Lee;Andrew K. Sun;Heonho Choi; Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • NeQuick G is the ionosphere model utilized by Galileo single-frequency users to estimate the ionospheric delay on each user-satellite link. The model is characterized by the effective ionization level (Az) index, determined by a modified dip latitude (MODIP) and broadcast coefficients derived from daily global space weather observations. However, globally fitted Az coefficients may not accurately represent ionosphere within local area. This study introduces a method for regional ionospheric modeling that searches for locally optimized Az coefficients. This approach involves fitting TEC output from NeQuick G to TEC data collected from GNSS stations around Korea under various ionospheric conditions including different seasons and both low and high solar activity phases. The optimized Az coefficients enable calculation of the Az index at any position within a region of interest, accounting for the spatial variability of the Az index in a polynomial function of MODIP. The results reveal reduced TEC estimation errors, particularly during high solar activity, with a maximum reduction in the RMS error by 85.95%. This indicates that the proposed method for NeQuick G can effectively model various ionospheric conditions in local areas, offering potential applications in GNSS performance analyses for local areas by generating various ionospheric scenarios.

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

Development of 1-3 Piezo-Composites made by the method of "Dice & Fill" and Estimation of Their Piezoelectric Characteristics (Dice & Fill 방식을 이용한 1-3 복합재 압전진동자 개발 및 압전특성 평가)

  • 김영덕;정우철;김광일;김흥락;김동수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.869-872
    • /
    • 2000
  • The aim of present work was to fabricate the piezoelectric composite materials of low megahertz applications such as non-destructive testing of materials. Among all the various composites, those with PZT rods embedded in Spurrs epoxy with regular periodicity (1-3 connectivity) was fabricated by dice and fill method. The fabricated size of the PZT cell were 0.18X0.18, 0.28X0.28mm$^2$, respectively. And the volume ratio of the PZT cell were 52, 64%, respectively. The resonant frequency and anti-resonant frequency of the composites were 3.5 MHz and 4.3MHz, respectively. The piezoelectric coupling coefficient were about 38 and 37% and the mechanical quality factor were about 12.7 and 22. These value were very different from these of bulk PZT Plate.

  • PDF

Multi-Finger 3D Landmark Detection using Bi-Directional Hierarchical Regression

  • Choi, Jaesung;Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.9-11
    • /
    • 2016
  • Purpose In this paper we proposed bi-directional hierarchical regression for accurate human finger landmark detection with only using depth information.Materials and Methods Our algorithm consisted of two different step, initialization and landmark estimation. To detect initial landmark, we used difference of random pixel pair as the feature descriptor. After initialization, 16 landmarks were estimated using cascaded regression methods. To improve accuracy and stability, we proposed bi-directional hierarchical structure.Results In our experiments, the ICVL database were used for evaluation. According to our experimental results, accuracy and stability increased when applying bi-directional hierarchical regression more than typical method on the test set. Especially, errors of each finger tips of hierarchical case significantly decreased more than other methods.Conclusion Our results proved that our proposed method improved accuracy and stability and also could be applied to a large range of applications such as augmented reality and simulation surgery.

Grid-based Correlation Localization Method in Mixed Line-of-Sight/Non-Line-of-Sight Environments

  • Wang, Riming;Feng, Jiuchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.87-107
    • /
    • 2015
  • Considering the localization estimation issue in mixed line-of-sight (LOS)/non-LOS(NLOS) environments based on received signal strength (RSS) measurements in wireless sensor networks, a grid-based correlation method based on the relationship between distance and RSS is proposed in this paper. The Maximum-Likelihood (ML) estimator is appended to further improve the localization accuracy. Furthermore, in order to reduce computation load and enhance performance, an improved recursively version with NLOS mitigation is also proposed. The most advantages of the proposed localization algorithm is that, it does not need any prior knowledge of the propagation model parameters and therefore does not need any offline calibration effort to calibrate the model parameters in harsh environments, which makes it more convenient for rapid implementation in practical applications. The simulation and experimental results evidence that the proposed localization algorithm exhibits good localization performance and flexibilities for different devices.

An Experimental Estimation of Two Detection Limit Models

  • Ma Chang-Jin;Tohno Susumu;Kasahara Mikio;Kang Gong-Unn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.29-33
    • /
    • 2004
  • In environmental studies, decisions are often made on the analytical data indicating certain contaminants as being 'detected' or 'non-detectible.' Since detection limits are analytical method specific, one has to first review the concepts and definitions associated with analytical method systems and specifications. In this study, the experimental analytical values for a series of low level standards (for an ionic species) were used as an example to estimate two different method detection limits (MDL). The scores of EPA's MDL and Pallesen's MDL determined by real analytical scores are 0.0575 and 0.0561 mg/L, respectively for our nitrate data. These scores determined by two different MDL models are roughly similar, while there are apparent differences between two methods with respect to statistical and systematical procedure. However, determination of MDL for one's laboratory provides some practical applications which helps to assure one's regulating authorities that one's measured scores are accurate.

Development of Estimation Method of Sensing Ability According to Smart Sensor Types (지적센서 형태에 따른 센싱능력 분석기법 개발)

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Kang, Hee-Young;Park, Jun-Hong;Hong, Jin-Who
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.330-335
    • /
    • 2000
  • This paper deals with sensing ability of smart sensor that has a sensing ability of distinguish materials. We have developed new signal processing method that have distinguish different materials. We made the two type of smart sensors for experiment. The first type of smart sensor is H2 type. The second type of smart sensor is HH type. The smart sensor was developed for recognition of material. And then we developed estimation method of sensing ability of smart sensors. The first method(Sensing Ability Index) is developed for H2 smart sensor. The second method($R_{SAI}$ Index) is developed for HH smart sensor. We estimated sensing ability of smart sensor with new SAI and $R_{SAI}$ method. This paper describes our primary study for a new method of estimate sensing ability of smart sensor, which is need for precision work system. This is a study of dynamic characteristics of smart sensor according to frequency and displacement changing with new SAI and $R_{SAI}$ method. Experiment and analysis are executed for proper dynamic sensing condition. First, we developed advanced smart sensors. Second, we develop new SAI and $R_{SAI}$ methods that have a sensing ability of distinguish materials. Dynamic characteristics of smart sensor are evaluated through new SAI and $R_{SAI}$ method relatively. We can use the new SAI and $R_{SAI}$ method for finding materials. Applications of this method are finding abnormal condition of object(auto-manufacturing), feeling of object(medical product), robotics, safety diagnosis of structure, etc.

  • PDF

Design and Development of the Multiple Kinect Sensor-based Exercise Pose Estimation System (다중 키넥트 센서 기반의 운동 자세 추정 시스템 설계 및 구현)

  • Cho, Yongjoo;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.558-567
    • /
    • 2017
  • In this research, we developed an efficient real-time human exercise pose estimation system using multiple Kinects. The main objective of this system is to measure and recognize the user's posture (such as knee curl or lunge) more accurately by employing Kinects on the front and the sides. Especially it is designed as an extensible and modular method which enables to support various additional postures in the future. This system is configured as multiple clients and the Unity3D server. The client processes Kinect skeleton data and send to the server. The server performs the multiple-Kinect calibration process and then applies the pose estimation algorithm based on the Kinect-based posture recognition model using feature extractions and the weighted averaging of feature values for different Kinects. This paper presents the design and implementation of the human exercise pose estimation system using multiple Kinects and also describes how to build and execute an interactive Unity3D exergame.

Structural identification of concrete arch dams by ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.227-237
    • /
    • 2013
  • Modal testing, widely accepted and applied method for determining the dynamic characteristics of structures for operational conditions, uses known or unknown vibrations in structures. The method's common applications includes estimation of dynamic characteristics and also damage detection and monitoring of structural performance. In this study, the structural identification of concrete arch dams is determined using ambient vibration tests which is one of the modal testing methods. For the purpose, several ambient vibration tests are conducted to an arch dam. Sensitive accelerometers were placed on the different points of the crest and a gallery of the dam, and signals are collected for the process. Enhanced Frequency Domain Decomposition technique is used for the extraction of natural frequencies, mode shapes and damping ratios. A total of eight natural frequencies are attained by experimentally for each test setup, which ranges between 0-12 Hz. The results obtained from each ambient vibration tests are presented and compared with each other in detail. There is a good agreement between the results for all measurements. However, the theoretical fundamental frequency of Berke Arch Dam is a little different from the experimental.