• 제목/요약/키워드: different concrete strengths

검색결과 294건 처리시간 0.023초

Statistical methods of investigation on the compressive strength of high-performance steel fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.153-169
    • /
    • 2012
  • The contribution of steel fibers on the 28-day compressive strength of high-performance steel fiber reinforced concrete was investigated, is presented. An extensive experimentation was carried out over water-cementitious materials (w/cm) ratios ranging from 0.25 to 0.40, with silica fume-cementitious materials ratios from 0.05 to 0.15, and fiber volume fractions ($V_f$= 0.0, 0.5, 1.0 and 1.5%) with the aspect ratios of 80 and 53. Based on the test results of 44 concrete mixes, mathematical model was developed using statistical methods to quantify the effect of fiber content on compressive strength of HPSFRC in terms of fiber reinforcing index. The expression, being developed with strength ratios and not with absolute values of strengths, is independent of specimen parameters and is applicable to wide range of w/cm ratios, and used in the mix design of steel fiber reinforced concrete. The estimated strengths are within ${\pm}3.2%$ of the actual values. The model was tested for the strength results of 14 mixes having fiber aspect ratio of 53. On examining the validity of the proposed model, there exists a good correlation between the predicted values and the experimental values of different researchers. Equation is also proposed for the size effect of the concrete specimens.

Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks

  • Blumauer, Urska;Hozjan, Tomaz;Trtnik, Gregor
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.247-256
    • /
    • 2020
  • In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.

Effects of concrete strength on structural behavior of holed-incrementally prestressed concrete (H-IPC) girder

  • Han, Man Yop;Kim, Sung Bo;Kang, Tae Heon
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.113-126
    • /
    • 2015
  • Holed-Incrementally Prestressed Concrete (H-IPC) girders are designed using the following new design concepts. At first, web openings reduce the self-weight of the girder, and also diffuse prestressing tendon anchorages. The reduced end anchoring forces decrease the web thickness of the end sections. Additionally, precast technology help to improve the quality of concrete and to reduce the construction period at the site. For experimentally verification, two 50 m full-scale H-IPC girders are manufactured with different concrete strength of 55 MPa and 80 MPa. The safety, stiffness, ductility, serviceability and crack development of H-IPC girder are measured and compared with each other for different strengths. Both girders show enough strength to carry live load and good stiffness to satisfy the design criteria. The experimental result shows the advantages of using high strength concrete and adopting precast girder. The test data can be used as a criterion for safety control and maintenance of the H-IPC girder.

Bond strength of deformed steel bars embedded in geopolymer concrete

  • Barzan Omar, Mawlood;Ahmed Heidayet, Mohammad;Dillshad Khidhir, Bzeni
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.331-339
    • /
    • 2022
  • Geopolymer concrete (GPC) is one of the best substitute materials for conventional concrete in construction. The conventional concrete provided by Portland cement has a detrimental influence on the environment during its production. In this study, the bond strength, which is an important structural property, of deformed steel bars with slag-based GPC was measured. In accordance with the ASTM C234 procedure, bond strength was measured on 18 specimens of slag-based GPC with three sizes of steel bars and different embedded lengths. Two groups of GPC specimens with different compressive strengths, which were cured under ambient conditions, were tested. The results indicated that the bar diameter has a great effect on the bond strength, and the bond strength behavior of the slag-based GPC is comparable with that of conventional concrete. The ACI-318 Code for the bond strength of ordinary Portland cement concrete can be used conservatively to determine the bond strength of the GPC reinforced with deformed steel bars.

막요소 해석에 사용된 트러스 모델을 이용한 철근콘크리트 보의 전단거동 예측 (Shear Response Prediction of the Reinforced Concrete Beams using Truss Models for Membrane Element Analysis)

  • 김상우;이정윤
    • 한국공간구조학회논문집
    • /
    • 제3권1호
    • /
    • pp.77-85
    • /
    • 2003
  • This paper presents a truss model that can predict the shear behavior of reinforced concrete (RC) beams subjected to the combined actions of shear and flexure. Unlike other truss models, the proposed truss model, TATM, takes into account the effect of the flexural moment on the shear strength of RC beams with different shear span-to-depth ratios. To check the successfulness of the proposed model experimentally obtained stress shear strain curves were compared to the predicted ones using the proposed truss model. Furthermore, the shear strengths of 170 RC test beams with variable shear span-to-depth ratios were compared to the shear strengths as given by the truss model reported in this paper.

  • PDF

Deflection prediction for reinforced concrete deep beams

  • Lu, Wen-Yao;Hwang, Shyh-Jiann;Lin, Ing-Jaung
    • Computers and Concrete
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 2010
  • A simplified method, developed from the softened strut-and-tie model, for determining the mid-span deflection of deep beams at ultimate state is proposed. The mid-span deflection and shear strength predictions of the proposed model are compared with the experimental data collected from 70 simply supported reinforced concrete deep beams, loaded with concentrated loads located at a distance a from an end reaction. The comparison shows that the proposed model can accurately predict the mid-span deflection and shear strength of deep beams with different shear span-to-depth ratios, different concrete strengths, and different horizontal and vertical hoops.

Optimization of Curing Regimes for Precast Prestressed Members with Early-Strength Concrete

  • Lee, Songhee;Nguyen, Ngocchien;Le, Thi Suong;Lee, Chadon
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.257-269
    • /
    • 2016
  • Early-strength-concrete (ESC) made of Type I cement with a high Blaine value of $500m^2/kg$ reaches approximately 60 % of its compressive strength in 1 day at ambient temperature. Based on the 210 compressive test results, a generalized rateconstant material model was presented to predict the development of compressive strengths of ESC at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) and maximum temperatures (20, 30, 40, 50 and $60^{\circ}C$) for design compressive strengths of 30, 40 and 50 MPa. The developed material model was used to find optimum curing regimes for precast prestressed members with ESC. The results indicated that depending on design compressive strength, conservatively 25-40 % savings could be realized for a total curing duration of 18 h with the maximum temperature of $60^{\circ}C$, compared with those observed in a typical curing regime for concrete with Type I cement.

Direct Shear Test of Retrofit Anchors Using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yong-Gon
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.91-99
    • /
    • 2000
  • A new type of retrof=t anchor bolt that uses deformed reinforcing bars and a commercial adhesive was developed and then an experimental study was carried out to determine the behavior of the anchors in direct shear. The steel-to-concl몫ete interface was tested. Plain concrete slabs with about 20-MPa compressive strength were used for 23 direct shear tests performed Test variables were anchor diameters (D16, D22. and D29) and edge effect. Three different shear tests were completed: simple shear, edge shear where anchors were pulled against the concrete core, and edge shear where anchors were pushed against the concrete cover In the simple and the edge shear tests where the anchors were pulled against the core, the theoretical dowel strength determined by (equation omitted) was achieved but with relatively large displacements. The shear resistances increased with the increasing displacements. In the edge shear test where the anchors were pushrd against the cover, the peak shear strengths signif=cantly lower than the theoretical dowel strength were determined due to cracks developed in concrete when the edge distance was 80 mm. The peak strengths were about 50% of the dowel strength for Dl6 bar. and about 25% or less of the dowel strength for D22 and D29 bars. Test results revealed that the edge shear where the anchor was pushed against the cover controled.

  • PDF

Mechanical characteristics of a classical concrete lightened by the addition of treated straws

  • Kammoun, Zied;Trabelsi, Abderraouf
    • Advances in concrete construction
    • /
    • 제6권4호
    • /
    • pp.375-386
    • /
    • 2018
  • This experimental work aims at developing and investigating a lightened concrete by the addition of treated straws. The used formulation is based on that of an ordinary concrete which is composed of sand and gravel as the main aggregates. The properties of the straws are improved by using one of two treatments before their use: the hot water and bitumen. Henceforth, the main objective of this study is to assess the mechanical characteristics of different formulations with different compositions and treatments on straws. The obtained results have shown that the addition of straws improves its lightness property. However, it decreases the compressive and flexural strengths as well as decreases the modulus of elasticity and increases the dimensional variations. Set into comparison to the concrete with untreated straws, the treatment of straws by hot water or by bitumen improves most of the characteristics.

Incorporation of Crushed Sands and Tunisian Desert Sands in the Composition of Self Compacting Concretes Part II: SCC Fresh and Hardened States Characteristics

  • Rmili, Abdelhamid;Ouezdou, Mongi Ben;Added, Mhamed;Ghorbel, Elhem
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.11-14
    • /
    • 2009
  • This paper is interested in the incorporation of crushed sand and desert sand in the composition the self compacting concretes (SCC). Desert dune sand, which has a fine extra granulometry, and the crushed sand, which contains an important content of fines, can constitute interesting components for SCC. Part II consists in studying the behaviour of SCC containing various sands with different origins. These sands, with different sizes, consist of several combinations of rolled sand (RS), crushed sand (CS) and desert sand (DS). The study examines the influence of the granular combination of sands on the characteristics in the fresh and the hardened state of SCC. The results of the experimental tests showed an improvement of the workability of the fresh SCC by combining sands of varied granulometry. The addition of the DS to CS or to RS allowed the increase of the mixture viscosity but decreased the mechanical strengths. Furthermore, the CS-RS combinations increased the compressive and the tensile strengths of the studied SCC. The optimized formulations of sands gave the highest performances of the SCC.