• 제목/요약/키워드: different concrete strength

검색결과 1,986건 처리시간 0.028초

고강도 콘크리트 부재의 횡보강 효과에 관한 연구 (The Lateral Confinment Effects of Spiral Reinforcement of High Strength Concrete Columns.)

  • 신성우;권영호;이광수;오정근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.63-67
    • /
    • 1989
  • Various studies have been done to investigate the effectiveness of lateral confinement of lower strength concrete(below 420kg/$\textrm{cm}^2$). But little research its effectiveness for high strength concrete. A certain concern has been arised that the beneficial effect of lateral confinement in high strength concrete may be different from that in lower strength. This study aimed to investigate that concern with different confinement spacing(D/2 : D/4). The results show that beneficial effects of spiral confinement are more pronounced for lower strength concrete as compared to higher strength concrete.

  • PDF

Multi-axial strength criterion of lightweight aggregate (LWA) concrete under the Unified Twin-shear strength theory

  • Wang, Li-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.495-508
    • /
    • 2012
  • The strength theory of concrete is significant to structure design and nonlinear finite element analysis of concrete structures because concrete utilized in engineering is usually subject to the action of multi-axial stress. Experimental results have revealed that lightweight aggregate (LWA) concrete exhibits plastic flow plateau under high compressive stress and most of the lightweight aggregates are crushed at this stage. For the purpose of safety, therefore, in the practical application the strength of LWA concrete at the plastic flow plateau stage should be regarded as the ultimate strength under multi-axial compressive stress state. With consideration of the strength criterion, the ultimate strength surface of LWA concrete under multi-axial stress intersects with the hydrostatic stress axis at two different points, which is completely different from that of the normal weight concrete as that the ultimate strength surface is open-ended. As a result, the strength criteria aimed at normal weight concrete do not fit LWA concrete. In the present paper, a multi-axial strength criterion for LWA concrete is proposed based on the Unified Twin-Shear Strength (UTSS) theory developed by Prof Yu (Yu et al. 1992), which takes into account the above strength characteristics of LWA under high compressive stress level. In this strength criterion model, the tensile and compressive meridians as well as the ultimate strength envelopes in deviatoric plane under different hydrostatic stress are established just in terms of a few characteristic stress states, i.e., the uniaxial tensile strength $f_t$, the uniaxial compressive strength $f_c$, and the equibiaxial compressive $f_{bc}$. The developed model was confirmed to agree well with experimental data under different stress ratios of LWA concrete.

재생골재의 함량차이에 따른 재생콘크리트의 강도 특성 (Variation of Strength Characteristics of Recycled Concrete due to Different Recycled Aggregate Contents)

  • 김광우;이상범;최영규;조희원;정규동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.31-36
    • /
    • 1996
  • Various strength characteristics of recycled concretes containing different contents of recycled aggregates from waste concretes were compared with one another. Five different contents. 0%, 50%, 60%, 70% and 80%, of recycled concrete were used for this study. Study results showed that the compressive strength, flexural strength, tensile strength, elastic modulus and fracture toughness varied with contents of recycled aggregates. Target strength of the recycled concrete could be difined by nonparametric regression model as a funcion of content of recycled aggregate in the mix.

  • PDF

고유동 콘크리트의 응결특성과 압축강도 발현 (Setting and Compressive Strength Development of Hihg Flowing Concrete)

  • 권영진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.8-13
    • /
    • 1995
  • High flowing concrete has been made using a combination of different cementitious material. The use of supplementary cementitious material like ground granulated slag is not only interesting from an economical point of view but also from a mechanical and rheological point of view. In the case of high strength concrete, relation between the maturity and compressive strength development of high strength concrete is aproximated by appling gompertz curve and suggested new estimating method. It is the aim of this study to analysis the effect of different types of mineral fine power on the setting and compressive strength development of high flowing concrete.

  • PDF

Experimental investigating the properties of fiber reinforced concrete by combining different fibers

  • Ghamari, Ali;Kurdi, Javad;Shemirani, Alireza Bagher;Haeri, Hadi
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.509-516
    • /
    • 2020
  • Adding fibers improves concrete performance in respect of strength and plasticity. There are numerous fibers for use in concrete that have different mechanical properties, and their combination in concrete changes its behavior. So, to investigate the behavior of the fiber reinforced concrete, an in vitro study was conducted on concrete with different fiber compositions including different ratios of steel, polypropylene and glass fibers with the volume of 1%. Two forms of fibers including single-stranded and aggregated fibers have been used for testing, and the specimens were tested for compressive strength and dividable tensile strength (splitting tensile) to determine the optimal ratio of the composition of fibers in the concrete reinforced by hybrid fibers. The results show that the concrete with a composition of steel fibers has a better performance than other compounds. In addition, by adding glass and propylene fibers to the composition of steel fibers, the strength of the samples is reduced. Also, if using the combination of fibers is required, the use of a combination of glass fibers with steel fibers will provide a better compressive strength and tensile strength than the combination of steel fibers with propylene.

고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구 (An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns)

  • 최창익;박동규;손혁수;김준범;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

플라이애시를 함유한 고강도 콘크리트의 조기 강도와 속도 발현 특성 (Characteristics of Early Strength and Velocity Development in High Strength Concrete Containing Fly Ash)

  • 이회근;윤태섭;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.43-48
    • /
    • 2001
  • The use of fly ash in cement and concrete industries has many benefits including engineering, economic, and ecological aspects. However, it has a disadvantage of low strength development, especially at early ages. In this study, in order to overcome this problem, the early strength accelerating agent($NA_{2}$ $SO_{4}$) was selected and applied to the production of high strength concrete(HSC) containing fly ash. It was found that the compressive strength of fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ has greater than that of concrete containing fly ash only until 7 days after casting. From the microstructural point of view, ettringite increased and pores decreased in fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ , leading to the development of early age strength. It was also found that the velocity vs. strength relationship of HSC is considerably different from that of low-strength concrete(LSC). Therefore, in order to predict early age strength of HSC, a estimation equation different from that for LSC is needed.

  • PDF

콘크리트 코어의 강도특성에 관한 연구 (A Study on the Strength Characteristics of Concrete Cores)

  • 권영웅;이성용;신정식;전익찬;김민수;박송철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.85-90
    • /
    • 2002
  • This paper concerns the within test strength of concrete cured under different conditions. Those conditions are water curing, field curing and cores drilled from the existing structures. The test factors are not only above cured conditions but also concrete ages of 3, 7, 14 and 28 days and concrete strength of 202, 252 and 650kgf/$\textrm{cm}^2$. The test results are as follows; (1) In spite of within test results, concrete strength is very different from curing states of concrete (2) The strength of cores drilled from existing structures are smaller than the strength of concrete cured in water by 3~4% and larger than that of concrete cured in field by 8~17% (3) Core strength is largely dependant on the curing state of top surface of concrete.

  • PDF

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.

Bond strength of deformed steel bars embedded in geopolymer concrete

  • Barzan Omar, Mawlood;Ahmed Heidayet, Mohammad;Dillshad Khidhir, Bzeni
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.331-339
    • /
    • 2022
  • Geopolymer concrete (GPC) is one of the best substitute materials for conventional concrete in construction. The conventional concrete provided by Portland cement has a detrimental influence on the environment during its production. In this study, the bond strength, which is an important structural property, of deformed steel bars with slag-based GPC was measured. In accordance with the ASTM C234 procedure, bond strength was measured on 18 specimens of slag-based GPC with three sizes of steel bars and different embedded lengths. Two groups of GPC specimens with different compressive strengths, which were cured under ambient conditions, were tested. The results indicated that the bar diameter has a great effect on the bond strength, and the bond strength behavior of the slag-based GPC is comparable with that of conventional concrete. The ACI-318 Code for the bond strength of ordinary Portland cement concrete can be used conservatively to determine the bond strength of the GPC reinforced with deformed steel bars.