• Title/Summary/Keyword: different concrete ages

Search Result 106, Processing Time 0.021 seconds

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

Mechanical Properties of Reinforced Concrete Slabs at Early Ages (초기재령 콘크리트 슬래브의 처짐 예측)

  • 신성우;유석형;오성진;황동규;박기홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.397-400
    • /
    • 2002
  • The mechanical properties of concrete such as modulus of elasticity, bond strength and shear strength are proportional to square root of compressive strength. And compressive strength of concrete is developed rapidly at early ages. Thus the relationship between compressive strength and its mechanical properties should be verified because the mechanical properties of early age concrete and hardened concrete are different. In this study, to predict the concrete slab deflection at early ages, modulus of elasticity and effective moment of inertia(Ie) are observed and compared with experimental results.

  • PDF

Cyclic load experiment study on the laminated composite RC walls with different concrete ages

  • Zhang, Hongmei;Lua, Xilin;Li, Jianbao;Liang, Lin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.745-758
    • /
    • 2010
  • 12 typical laminated composite reinforced concrete (RC) walls with different concrete ages and 3 cast-in-place RC walls subjected to low frequency cyclic load were carried out in this study. The failure mode, force-deformation response and energy dissipation capacity of these specimens were investigated. Differences of structural behaviours between composite RC walls and common cast-in-place RC walls were emphasized in the analysis. The compatibility of the composite specimens with different concrete ages was discussed based on the experiment. Test results indicated that the differences between the lateral bearing capacity and the displacement ductility of the composite walls and the common walls were not so obvious. Some of the composite specimen even has higher bearing capacity under the experiment loading situation. Besides, the two parts of the laminated composite specimens demonstrates incompatibility at the later loading sequence on failure mode and strain response when it is in tension. Finally, this laminated composite shear walls are suggested to be applied in rapid reconstruction structures which is not very high.

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Analysis of Chloride Ion Penetration for Harbor Concrete Structure with In-situation Environment (항만 콘크리트 구조물의 현장환경변화에 따른 염소이온 침투해석)

  • Han, Sang-Hun;Jang, In-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.225-228
    • /
    • 2004
  • In order to estimate the chloride ion penetration, the model, which considers diffusion and sorption, is proposed on the basis of Finite Element Method (FEM). The FEM program provides the estimation of chloride concentration according to cyclic humidity and sorption. After the humidity diffusion analysis is carried out, the chloride ion diffusion and sorption analysis are conducted on the basis of the preestimated humidity data in each element. Each element has different analysis variables at different ages and locations. At early ages and constant outer humidity, the difference between inner and outer relative humidity causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference with age, the effect of sorption on the chloride ion penetration decreases. By the way, the cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and the quantity of chloride ion around steel at later ages. Therefore, the in-situ analysis of chloride ion penetration for marine concrete structures must be performed considering the cyclic humidity condition and the long term sorption.

  • PDF

Analysis of Chloride Ion Penetraion for Marine Concrete Structure with Cyclic Humidity Environment (건습이 반복되는 환경하의 해양콘크리트 구조물에 대한 염소이온 침투 해석)

  • Han, Sang-Hun
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2004
  • The diffusion model, which considers diffusion and sorption, is proposed. The FEM program developed on the basis of the diffusion model provides the estimation of chloride concentration according to cyclic humidity and sorption. After the humidity diffusion analysis is carried out, the chloride ion diffusion and sorption analysis are conducted on the basis of the preestimated humidity data in each element. Each element has different analysis variables at different ages and locations. At early ages, the difference between inner and outer relative humidity causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference with age, the effect of sorption on the chloride ion penetration decreases. By the way, the cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and the quantity of chloride ion around steel at later ages. Therefore, the in situ analysis of chloride ion penetration for marine concrete structures must be performed considering the cyclic humidity condition and the long term sorption.

Interaction of magnetic water and polypropylene fiber on fresh and hardened properties of concrete

  • Ansari, Mokhtar;Safiey, Amir
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.307-318
    • /
    • 2021
  • Utilizing fibers is an effective way to avoid the brittle behavior of the conventional concrete and can enhance its ductility. In particular, propylene fibers can improve concrete properties, including energy absorption, physical and mechanical properties, controlling shrinkage cracks. The increase of fiber density leads to an increase of the overlapping surface of the fiber of concrete and, in turn, a decrease of cracks developed in the concrete. However, the workability of fiber reinforced concrete tends to be lower than the conventional concrete owing mainly to the hairline thickness and excessive concentration of fibers. The low slump of concrete impedes the construction of reinforced concrete members. In this research, we study if the utilization of magnetic water can alleviate the workability issue of young fiber reinforced concrete. To this end, the compressive and flexural strength of four types of concrete (conventional concrete, fiber reinforced concrete, magnetic concrete, magnetic fiber-reinforced concrete) is studied and compared at three different ages of 7, 14, and 28 days. In order to study the influence of the fiber density and length, a study on specimens with three different fiber density (1, 2, 5 kg of fiber in each cubic meter of concrete) and fiber length (6, 12, 18 mm) is undertaken. The result shows the magnetic fiber concrete can result in an increase of the flexural and compressive strength of concrete at higher ages.

Concrete strength monitoring based on the variation of ultrasonic waveform acquired by piezoelectric aggregates

  • Wei, Li;Wang, Zijian;Cao, Maosen;Fu, Ronghua
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.591-598
    • /
    • 2020
  • Ultrasonic waves provide a non-destructive and sensitive way to monitor the concrete hydration. However, limited works are reported to monitor the evolution of the mechanical parameter at early ages. In this study, modified piezoelectric aggregates are embedded inside a concrete beam to excite and receive primary waves. A hydration index, namely, the variation of ultrasonic waveform (VUW) is developed to characterize the variation of the transmitted waves during the hydration process. The recorded hydration indices are compared with the compressive strength measured by destructive test at different ages. The results show that the VUW is closer to the compressive strength than the other two traditional hydration indices, ultrasonic velocity and wave packet energy. The proposed VUW provides a simple and accurate way to monitor the concrete hydration at early ages.

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang;Yanping Zhu;Pengfei Ma;Shuilong He;Xudong Shao
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.359-376
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.