• Title/Summary/Keyword: difference-based intercept estimator

Search Result 3, Processing Time 0.021 seconds

On study for change point regression problems using a difference-based regression model

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.539-556
    • /
    • 2019
  • This paper derive a method to solve change point regression problems via a process for obtaining consequential results using properties of a difference-based intercept estimator first introduced by Park and Kim (Communications in Statistics - Theory Methods, 2019) for outlier detection in multiple linear regression models. We describe the statistical properties of the difference-based regression model in a piecewise simple linear regression model and then propose an efficient algorithm for change point detection. We illustrate the merits of our proposed method in the light of comparison with several existing methods under simulation studies and real data analysis. This methodology is quite valuable, "no matter what regression lines" and "no matter what the number of change points".

Estimation of error variance in nonparametric regression under a finite sample using ridge regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1223-1232
    • /
    • 2011
  • Tong and Wang's estimator (2005) is a new approach to estimate the error variance using least squares method such that a simple linear regression is asymptotically derived from Rice's lag- estimator (1984). Their estimator highly depends on the setting of a regressor and weights in small sample sizes. In this article, we propose a new approach via a local quadratic approximation to set regressors in a small sample case. We estimate the error variance as the intercept using a ridge regression because the regressors have the problem of multicollinearity. From the small simulation study, the performance of our approach with some existing methods is better in small sample cases and comparable in large cases. More research is required on unequally spaced points.

Simultaneous outlier detection and variable selection via difference-based regression model and stochastic search variable selection

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.149-161
    • /
    • 2019
  • In this article, we suggest the following approaches to simultaneous variable selection and outlier detection. First, we determine possible candidates for outliers using properties of an intercept estimator in a difference-based regression model, and the information of outliers is reflected in the multiple regression model adding mean shift parameters. Second, we select the best model from the model including the outlier candidates as predictors using stochastic search variable selection. Finally, we evaluate our method using simulations and real data analysis to yield promising results. In addition, we need to develop our method to make robust estimates. We will also to the nonparametric regression model for simultaneous outlier detection and variable selection.