• Title/Summary/Keyword: diesel particulate Matter

Search Result 243, Processing Time 0.021 seconds

Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation (Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응)

  • Lee, Chanmin;Jeon, Yukwon;Hwang, Ho Jung;Ji, Yunseong;Kwon, Ohchan;Jeon, Ok Sung;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.584-588
    • /
    • 2019
  • The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskiteweb catalyst showed the higher catalytic activities (e.g., $T_{50}=490^{\circ}C$) than the only $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst (e.g., $T_{50}=586^{\circ}C$). Thus, this finding suggests that Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.

Development of a Cosmetic Ingredient Containing DHA Derivatives for Anti-inflammation, Anti-wrinkle, and Improvement of Skin Barrier Function (DHA 유도체를 이용한 항염, 항노화, 피부장벽 강화용 화장품 원료의 개발)

  • Lee, Miyoung;Lee, Gil-Yong;Suh, Jinyoung;Lee, Kyung min;Lee, Woojung;Cho, Hee Won;Yi, Jong-Jae;Seo, Jeong-Woo;Choi, Heonsik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • It is very important to control the inflammation of the skin because it can develop into diseases such as atopy as well as scarring and aging. In this work, we recently identified the in vitro synthesis of specialized pro-resolving mediators (SPMs) known to control inflammation in the human body and the applicability of cosmetics. Using recombinant protein of lipoxygenase from Glycine max, we succeeded to prepare mixtures of mono- or di-hydroxy DHA named as S-SPMs and used them for in vitro efficacy test. To investigate anti-inflammatory effect of S-SPMs, mRNA level of TNF-α and IL-6 were analyzed. Under UVB exposed condition, expression of both were decreased by S-SPMs treatment. And we observed reduced production of nitric oxide (NO) by S-SPMs application under the condition with diesel particulate matter (DPM). At the same experimental condition, malondialdehyde (MDA) production was decreased by S-SPMs, indicating the inhibitory effect of S-SPMs in lipid peroxidation. In addition, S-SPMs treatment resulted in reduction of matrix metalloproteinases-1 (MMP-1) expression and elevation of procollagen type I synthesis. Together with this, mRNA level of filaggrin and loricrin were increased by S-SPMs, indicating enhancement of skin barrier function. These results demonstrate that S-SPMs is a good candidate to develop as a cosmetic ingredient for anti-inflammation, anti-wrinkle, and improvement of skin barrier function.

Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model (미세먼지 유발 폐기능 손상 동물모델에서 RML의 호흡기 보호 효과)

  • Kim, Soo Hyun;Kim, Min Ju;Shin, Mi-Rae;Roh, Seong-Soo;Kim, Seung Hyung;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • Objective : This study is aimed to evaluate the protective effects of Rehmanniae Radix, Mori Folium, and Liriopie Tuber mixture (RML) on lung injury of Particulate matter less than 10 um in diameter and diesel exhaust particles (PM10D) mice model. Methods : To investigate the anti-inflammatory activity of RML, PM10D was diluted in aluminum hydroxide (Alum) in 7-week-old male mice and induced by Intra-Nazal-Tracheal (INT) injection method. Animal experiments were divided into 5 groups. Nor (normal mice), CTL (PM10D-induced mice with the administration of distilled water), DEXA (PM10D-induced mice with the administration of 3 mg/kg Dexamethasone), RML 100 (PM10D-induced mice treated with RML 100 mg/kg weight), and RML 200 (PM10D-induced mice treated with RML 200 mg/kg body weight). After 11 days administration, mice were sacrificed and inflammation-related immune cells in broncho-alveolar lavage fluid (BALF) were analyzed. Inflammation-related biomarkers were also analyzed in blood and lungs. Lung tissue was observed through histological examination. Results : In the PM10D induced model, the PML showed decreases in CXCL-1 and IL-17A in BALF. Expression of inflammatory cytokines and cough-related mRNA genes was significantly decreased in serum and lung tissue. The mixture treatment of RML significantly improved the immune related cells in the serum. In addition, histological observations showed a tendency to decrease the severity of lung injury. Conclusions : Overall, these results confirmed the respiratory protective effect of the RML mixture in a model of lung injury induced by air pollution (PM10+DEP), suggesting that it is a potential treatment for respiratory damage.