• 제목/요약/키워드: diesel exhaust particulate

검색결과 231건 처리시간 0.027초

대형디젤기관에서 바이오디젤 열화와 엔진부하에 따른 배출가스특성 및 성능에 관한 연구 (Study on Performance and An Exhaust Emission by Bio-Diesel Deterioration and Engine Load Rate at Heavy-Duty Diesel Engine)

  • 박만재;김미수
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.56-63
    • /
    • 2007
  • Modern diesel vehicle has to comply with the EURO IV, V regulation with low level of particulate matter and smoke emission Moreover, emission standards of each countries are becoming stringent in advanced countries such as USA and Europe. Because Bio-diesel is similar to diesel fuel, it is essential to judge the environmental and health effects deriving from the use of Bio-diesel in diesel engine. The deterioration characteristics of emission in accordance with aging vehicles must be regulated for Bio-diesel. Therefore, under 1200 driving hours, 220,000km driving distance condition and full load, the deterioration characteristics of emission were estimated. We could reduce sulfur contents of fuel, particulate matter and smoke emission by using Bio-diesel and conform the influence of engine performance, emission, and fuel consumption by Bio-diesel deterioration

New Technology with Porous Materials: Progress in the Development of the Diesel Vehicle Business

  • Ohno, Kazushige
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.497-506
    • /
    • 2008
  • The long time of twenty years has passed since Diesel Particulate Filter (DPF) was proposed before the practical use. The main factors that DPF has been put to practical use in this time, are the same time proposal of the evaluation method of SiC porous materials linked to he performance on the vehicle, and that the nature of thermal shock required for the soot regeneration (combustion of soot) in the DPF is different from the conventional requirement for the rather rapid thermal shock. For the requirements, these includ demonstrating utmost the characteristic of SiC's high thermal conductivity, and overcoming the difficulty of thermal expansion of SiC-DPF by dividing the filter into segments binding with the cement of lower Young's modulus, and the innovation of technology around the diesel exhaust system such as Common-Rail system. As the results of these, the cumulative shipments of SiC-DPF have reached about 5 million, and it goes at no claim in the market.

후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석 (Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System)

  • 박철웅;최영;임기훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

플라즈마를 이용한 매연여과장치 재생용 버너 개발 (Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter)

  • 차민석;이대훈;김관태;이재옥;송영훈;김석준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.202-206
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can bum 20 - 60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter disel engine can be raised up to around $600^{\circ}C$ for the range of engine speeds is idle - 3,000 rpm. The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

A Particulate Matter Sensor with Groove Electrode for Real-Time Diesel Engine On-Board Diagnostics

  • Kim, S.;Kim, Y.;Lee, J.;Lim, S.;Min, K.;Chun, K.
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.191-196
    • /
    • 2013
  • A particulate matter sensor fabricated by MEMS process is proposed. It is developed to accommodate Euro6 on-board diagnostics regulation for diesel automobile. In the regulation, emission of diesel particulate matter is restricted to 9 mg/km. Particulate matter sensor is designed to use induced charges by charged particulate matter. To increase sensitivity of the sensor, groove is formed on sensor surface because wider surface area generates more induced charges. Sensitivity of the sensor is measured 10.6 mV/(mg/km) and the sensor shows good linearity up to 15.7 mg/km. Also its minimum detectable range is about 0.25 mg/km. It is suitable to detect failure of a diesel particulate filter which should filter particulate matter more than 9 mg/km. For removing accumulated particulate matter on the sensor which can disturb normal operation, platinum heater is designed on the backside of the sensor. The developed sensor can sense very low amount of particulate matter from exhaust gas in real-time with good linearity.

선박 주 추진기관으로 사용가능한 대형 디젤엔진의 배기가스 특성 분석 (Exhaust Emission Characteristics from Heavy-duty Diesel Engine applicable to Prime Propulsion Engine for Marine Vessels)

  • 이형민;박랑은
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.484-489
    • /
    • 2012
  • 본 논문은 선박의 주 추진기관으로 사용가능한 육상 운송수단에 탑재되어있는 대형 디젤엔진에서 배출되는 입자상 물질과 질소산화물의 배출특성을 ESC mode에 적용시켜 분석하는데 초점을 두었다. 입자상 물질은 엔진의 고부하 영역에서 다량으로 배출되는 특성을 확인 할 수 있었으며 질소산화물의 경우 배기가스 온도 측정형태와 동일한 경향으로 배출되었다. 매연여과장치를 부착하여 입자상 물질의 배출특성을 분석한 결과 mode별 1/100~1/1,000배까지 저감되었다. 그러나 급격한 엔진 부하 변동 시 저감효과는 떨어졌으며 고속-고부하 영역에서는 매연여과장치내부의 온도상승으로 일부 재생현상이 발생하여 입자상 물질의 배출 증가 결과를 초래하는 현상이 발생하였다. 시험엔진에서 배출되는 입자상 물질의 입경분포를 분석한 결과 대부분 100nm 이하의 크기를 가지는 나노 입자가 배출되었으며 매연여과장치를 부착 및 탈착하여 측정한 결과 배출수준에는 차이가 있지만 입자상 물질의 입경분포는 비슷한 경향으로 분석되었다.

바이오디젤 사용에 따른 경유승용차의 나노입자 배출특성 연구 (A Study on the Nano-particles Emission Exhausted from Diesel Passenger Vehicle According to Using Biodiesel)

  • 권상일;이창식
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.65-70
    • /
    • 2007
  • This paper is to investigate the characteristics of exhaust emissions and nano-particle emission from diesel passenger vehicle according to using biodiesel fuel as an alternative fuel. In this work, the particulate matters (PM) of exhaust emissions in diesel engine were investigated by number of particles and mass measurement. The mass of the total PM was measured using the standard gravimetric measurement method, the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). Total PM emission was reduced $2{\sim}38%$ and number concentration was reduced $1{\sim}27%$ according to increasing blended ratio of biodiesel with diesel fuel. Total PM emission was reduced more than particle number emission because volatile particles were measured in total PM but were not measured in particle number emissions.

  • PDF

CI기관의 벽유동 세라믹 모노리스 필터트랩에 관한 수학적해석 및 시뮬레이션 (Mathematical Analysis and Simulation on a Wall-Flow Ceramic Monolith filter trap in CI Engine)

  • 한영출;최규훈;방성환
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.58-65
    • /
    • 1994
  • In order to reduce particulate emissions from diesel vehicles, mathematical model is established and analyzed on ceramic wall-flow monolith filter. A wall-flow monolith filter placed in the exhaust stream of a diesel engine can effectively limit the emission of diesel particulates through the monolith. The accumulated particulates can then be periodically combusted inside the monolith by directing hot gas to the monolith while normal engine exhaust is routed around the monolith system. The resulting low flow rates through the monolith require consideration of gas dynamics through the channels as well as particulate combustion to analyze this regeneration process. A mathematical model of the regeneration is formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy. Numerical solutions are obtained by using a finite difference techniques for the spatial discretization. So we can use filter simulation program for the purpose of filter design and actual filter regeneration

  • PDF

자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구 (A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System)

  • 이진욱;조규백;김홍석;정용일
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.