• Title/Summary/Keyword: diesel degradation

Search Result 88, Processing Time 0.032 seconds

Biodegradation of Diesel by Rhodococcus fascians in Sand Column (Rhodococcus fascians를 이용한 모래 컬럼내 디젤유 분해)

  • Moon, Jun-Hyung;Koo, Ja-Ryong;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Contamination of soils, groundwater, air and marine environment with hazardous and toxic chemicals is major side effect by the industrialization. Bioremediation, the application of microorganism or microbial processes to degrade environmental contaminant, is one of the new environmental technologies. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The purpose of this study is biodegradation of diesel in sand by using Rhodococcus fascians, a microorganism isolated from petroleum contaminated soil. This study was performed in the column containing sand obtained from sea sides. Changes in biodegradability of diesel with various flow rates, inoculum sizes, diesel concentrations, and pH were investigated in sand column. The optimal condition for biodegradation of diesel by R. fascians in sand column system was initial pH 8 and air flow rate of 30 mL/min. Higher diesel degradation was achieved at larger inoculum size and the diesel degradation by R. fascians was not inhibited by diesel concentration up to 5%.

미생물제제를 이용한 유류오염지역의 토양정화

  • 심두섭;송현주;박수진;고성환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.360-363
    • /
    • 2003
  • Bioremediation is often used for in situ remediation of petroleum-contaminated site. We studied the microbial degradation of hydrocarbon in an artificially diesel contaminated soil in laboratory microcosm. In control soil, about 30% of the initial TPH was diminished and the degradation of diesel oil was significantly enhanced by the addition of bioremediation agent (70% of TPH reduction).

  • PDF

Biodegradation of diesel oil and n-alkanes (C18, C20, and C22) by a novel strain Acinetobacter sp. K-6 in unsaturated soil

  • Chaudhary, Dhiraj Kumar;Bajagain, Rishikesh;Jeong, Seung-Woo;Kim, Jaisoo
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.290-298
    • /
    • 2020
  • A large residual fraction of aliphatic components of diesel prevails in soil, which has adverse effects on the environment. This study identified the most bio-recalcitrant aliphatic residual fraction of diesel through total petroleum-hydrocarbon fractional analysis. For this, the strain Acinetobacter sp. K-6 was isolated, identified, and characterized and investigated its ability to degrade diesel and n-alkanes (C18, C20, and C22). The removal efficiency was analysed after treatment with bacteria and nutrients in various soil microcosms. The fractional analysis of diesel degradation after treatment with the bacterial strains identified C18-C22 hydrocarbons as the most bio-recalcitrant aliphatic fraction of diesel oil. Acinetobacter sp. K-6 degraded 59.2% of diesel oil and 56.4% of C18-C22 hydrocarbons in the contaminated soil. The degradation efficiency was further improved using a combinatorial approach of biostimulation and bioaugmentation, which resulted in 76.7% and 73.7% higher degradation of diesel oil and C18-C22 hydrocarbons, respectively. The findings of this study suggest that the removal of mid-length, non-volatile hydrocarbons is affected by the population of bio-degraders and the nutrients used in the process of remediation. A combinatorial approach, including biostimulation and bioaugmentation, could be used to effectively remove large quantities of aliphatic hydrocarbons persisting for a longer period in the soil.

Biodegradation Enhancement of The Mixture of Kerosene and Diesel by using Biosurfactant from Pseudomonas aeruginosa F722 (Pseudomonas aeruginosa F722부터 유래된 biosurfactant를 이용한 등.경유 혼합물의 생분해율 향상)

  • ;;;skubo Motoki
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.529-535
    • /
    • 2003
  • We studied degradation effects of hydrophobic substrate such as kerosene and diesel by adding a biosurfactant originated from Pseudomonas aeruginosa F722 and chemical surfactants (Tween 80 and detergent) with aeration. The surface tensions of the biosurfactant, Tween 80 and detergent were 30mN/m, 39mN/m and 31mN/m, respectively. When the concentration of biosurfactant added in C-medium was 0.01 and 0.15%(w/v), the ratios of hydrocarbon degradation were 94.3% and 94.2% respectively. It was 6.2%(w/v) higher than when the concentrations of added biosurfactant were 0.05, 0.1 and 0.2%. The degradation ratios of the chemical surfactants (Tween 80 and detergent) were 94.5% and 93.5% respectively. The effects of the biosurfactant and chemical surfactants were similar on the degradation ratio in mixtures of kerosene and diesel. However, the population of viable p. aeruginosa F722 at the end of the cultivation period was twice as higher in the biosurfactant than that in the chemical surfactant. We also studied the effect of aeration (0.5vvm) on the degradation ratio. The biosurfactant addition experiment was conducted with 0.5vvm air, 35$^{\circ}C$, 150rpm, pH 8.0, 3days, 1.0% (w/v) substrate. When p. aeruginosa F722 and 0.15%(w/v) biosurfactant were added, the degradation ratio of hydrocarbon was 94.8%. Without p. aeruginosa F722, it was 68%. Thus, with aeration, the degradation ratio of hydrocarbon was increased by 26.8%. In addition, the cultivation time was shortened by 1/3. The degradation ratios of hydrocarbon in shaking culture (cultivation time; 3days) and stationary culture (cultivation time; 10days) were 94.8 and 93.7% respectively. Thus, the addition of biosurfactant and aeration enhanced the degradation of hydrocarbon originated kerosene and diesel.

Stability of Metal-supported SOFC using Diesel Reformate (디젤 개질 가스로 운전되는 금속지지체형 고체산화물 연료전지의 운전 안정성에 관한 연구)

  • Jeong, Jihoon;Baek, Seung-Wook;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.78.1-78.1
    • /
    • 2010
  • The metal-supported solid oxide fuel cell (SOFC) was studied. Hydrocarbon fueled operation is necessary to make SOFC system. Different operating characteristics for metal-supported SOFC are used than for conventional ones as hydrocarbon fueled operation. Metal-supported SOFC was successfully fabricated by a high temperature sinter-joining method and the cathode was in-situ sintered. Synthetic gas, which is compounded as the diesel reformate gas composition and low hydrocarbons was completely removed by the diesel reformer. Metal-supported SOFC with synthetic gas was operated and evaluated and its characteristics analyzed. Button cell and $5{\times}5cm^2$ single stack were mainly operated and analyzed. Long-term operation using diesel reformate shows degradation, and degradation analysis was completed in the view of metal oxidation. Solution to increase stability of long-term operation was tried in the way of materials and operating conditions. Finally, $5{\times}5cm^2$ metal-supported single stack using synthetic gas was operated for 1000 hours under the modified condition.

  • PDF

Biodegradation of Potential Diesel-Oxygenate Additive Including DBM(DiButyl Maleate) (DBM(DiButyl Maleate)을 포함한 잠재적 디젤첨가제 생분해특성)

  • Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, we have evaluated biodegradability of diesel-oxygenates including DBM and gasoline-oxygenates having similar physio-chemical properties using indigenous aerobic microorganisms from a diesel-contaminated soil. Toluene and Ethanol have shown higher biological activity and the first-order degradation rate constants ranged around $0.11{\sim}0.3day^{-1}$. However, MTBE, gasoline-oxygenate has shown as a limited substrate. Moreover, As increased initial concentrations of DBM and TGME, degradation rates of those were decreased relatively. As a strategy to evaluate biodegradability of DBM and TGME, reduction of diesel-oxygenates, $CO_2$ production and toxicity by algae were monitored. This results indicated possible mineralization of diesel-oxygenates, But we could predict that residual byproduct produced even though complete consumption of diesel-oxygenates were observed if algal toxicity variation considered. In conclusion, it is the first report that diesel-oxygenates including DBM could be biodegraded effectively by indigenous soil microorganisms and this result increased the possibility of bioremediation technology to apply into oil-contaminated sites.

Remediation of Diesel-Contaminated Soil by Electrokinetically Supplied Bacterial Cells

  • 이효상;이기세
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.20-23
    • /
    • 2000
  • The use of electrokinetic injection and transport for the distribution of an NAPLs-degrading microorganism in a sandy soil bed was studied. After the injection of the cell into cathode side of bed, an electric current was applied. The transport of cell though the sandy soil was achieved by electokinetics, mainly by electrophoresis, The pH control in electrode chamber plays un important role to achieve desirable cell transport because H$^{+}$ generated at anode is toxic or inhibits the transport of cells. Electokinetic distribution rate of bacterial cells changed depending on the applied electric current and pH. The degradation of diesel by electrokinetically transport cells were monitored.d.

  • PDF

Enhanced TPH Degradation of Diesel-Contaminated Soil by Microwave Heating (디젤오염토양의 TPH 분해를 위한 마이크로파의 가열특성)

  • Jung, Byung-Gil;Kim, Dae-Yong;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.479-484
    • /
    • 2008
  • The application of microwave technology has been investigated in the remediation of diesel-contaminated soil. The paper deals with economic assessment by means of cost analysis and degradation characteristics at different microwave powers for total petroleum hydrocarbon (TPH) in diesel contaminated soils. The soils from S Mountain around the D University were sampled. The samples were screened with 2.0 mm mesh and dried for 6 hours before the diesel was added into the dried soils. The diesel-contaminated soil (3,300 mg THP/kg soil) was prepared with diesel (S Co.). The drying process was carried out in a microwave oven, a standard household appliance with a 2,450 MHz frequency and 700 W of power. The experiments were conducted from 0 to 20 minutes as the microwave powers increased from 350W to 500W to 700W. The concentrations of TPH were analysed using a gas chromatography/mass spectrometer (GC/MS). The initial concentration of TPH was 3,300 mg TPH/kg soil. The weight of contaminated soil was 200g. The concentration of TPH was decreased to 1,828 mg TPH/kg soil (44.7%), 1,347 mg TPH/kg soil (59.2%) and 1,014 mg TPH/kg soil (69.3%) at 350W, 500W and 700W for 15 minutes respectively. In addition, the curve was best fit with first order kinetics using the least-square method. The ranges of a first order rate constant k and r-square were $0.0298{\sim}0.0375min^{-1}$ and $0.9373{\sim}0.9541$ respectively.

The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine (엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.

Study on carbon deposition in diesel autothermal reformer (디젤 자열개질기 내 탄소침적에 관한 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.37-40
    • /
    • 2007
  • Diesel autothermal reforming(ATR) is an effective method for hydrogen production. But, diesel ATR has several problems such as the sulfur poisoning of catalyst and carbon deposition during reforming reactor. Especially, carbon deposition is a severe problem, which causes rapid performance degradation, in the reforming reaction. Ethylene among the reformate gas is a carbon precursor. Effective decomposition of ethylene is an important issue. In this paper, we investigated the carbon deposition from ethylene in the reforming reaction for proper reaction condition of diesel ATR. We achieved relatively high performance of diesel ATR under $H_{2}O/C=0.8$, $O_{2}/C=3$ condition that was based on the experiment of ethylene reforming reaction.

  • PDF