• Title/Summary/Keyword: diesel degradation

Search Result 88, Processing Time 0.022 seconds

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

Proteomic Analysis of Diesel Oil Biodegradation by Bacillus sp. with High Phosphorus Removal Capacity Isolated from Industrial Wastewater

  • Hee-Jung Kim;Deok-Won Kim;Jin-Hyeok Moon;Ji-Su Park;Eun-Ji Oh;Jin Yoo;Deok-Hyun Kim;Sun-Hwa Park;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.649-659
    • /
    • 2023
  • This study was initiated to evaluate the phosphorus (P) removal and diesel oil degradation by bacteria isolated from industrial wastewater. The bacteria isolated were identified as Bacillus sp. The P removal efficiencies by Bacillus sp. were 99% at the initial 20 mg/L P concentration. The diesel degradation efficiencies by Bacillus sp. were 86.4% at an initial 1% diesel concentration. Lipophilicity by bacteria was the highest in the log phase, whereas it was the lowest in the death phase. As the diesel was used as a carbon source, P removal efficiencies by Bacillus sp. were 68%. When glucose, acetate, and a mixture of glucose and acetate as second carbon sources were added, the diesel degradation efficiencies were 69.22%, 65.46%, and 51.46%, respectively. The diesel degradation efficiency was higher in the individual additions of glucose or acetate than in the mixture of glucose and acetate. When P concentration increased from 20 mg/L to 30 mg/L, the diesel degradation efficiency was increased by 7% from 65% to 72%, whereas when P concentration was increased from 30 mg/L to 40 mg/L, there was no increase in diesel degradation. One of the five proteins identified by proteome analysis in the 0.5% diesel-treated samples may be involved in alkane degradation and is known as the cytochrome P450 system. Also, two of the sixteen proteins identified in the 1.5% diesel-treated samples may be implicated in the fatty acid transport system and alcohol dehydrogenation.

Bio Sparging Column Experiment for Remediation of Diesel Contaminated Groundwater (디젤오염 지하수 정화를 위한 공기주입정화법 칼럼 실험)

  • Chang Soon-Woong;Lee Si-Jin;Song Jung-Hoon;Kwon Soo-Youl
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1059-1065
    • /
    • 2004
  • Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.

Biodegradation of Diesel Oil by Microorganisms Isolated from Petroleum Contaminated Site (유류 오염지역으로부터 분리된 균주를 이용만 디젤유의 분해)

  • 박천보;허병기;윤현식
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.632-637
    • /
    • 2001
  • The cells obtained from diesel contaminated site were tested for diesel degradation by culturing them on the culture medium that contained diesel as the only carbon source. Two strains that grew well in the culture media were separated: one formed white colony and another strain formed yellow colony. When they were cultured together, much higher diesel degradation was obtained compares to that of individual cell culture. Mixed culture of white and yellow colony forming strains grew well with 1%(v/v) diesel and the addition of growth nutrients increased the diesel degradation. Additional nitrogen source was efficient for higher diesel degradation (over 90%) when it was compared with that without nitrogen source. When mixed culture of white and yellow colony forming cells were applied to the soil column system contaminated by diesel, 30 mL/min of air flow rate was found to be sufficient to degrade diesel oil. The diesel degradation did not increase noticeably at higher flow rate. The addition of nitrogen source resulted in the increase in diesel degradability.

  • PDF

A Study on Microbial Community and Microbial Degradation of Diesel (디젤의 미생물 분해와 군집에 관한 연구)

  • Choi, Hee-Chol;Cho, Yoon-A;Choi, Sang-Il;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.509-516
    • /
    • 2010
  • This study investigates characteristics of diesel degradation and variations of microbial community with the soil enrichment cultures. The cultures has yellow(YE-5) and transparent color's(WH-5) colony on solid plate medium. The bacillus type of YE-5 and WH-5 cultures showed diesel degradation at the rate of 99.07mg-Diesel/$L{\cdot}day$ and 57.82mg-Diesel/$L{\cdot}day$ in the presence of 1%(v/v) initial diesel concentration. Diesel degradation was 1.7 times faster than WH-5 culture. YE-5 or WH-5 culture could degrade a wide range of diesel compounds from $C_8$ to $C_24$. Microbial community analysis by PCR-DGGE technique shows that Psedomonas, Klebsiella, Escherichia and Stenotrophomonas as proteobacteria take role on the diesel degradation. uncultured Senotrophomonas sp. was only detected with YE-5 culture. It is concluded that proper combination of the microorganism should be present to stimulate the degradation of diesel and further studies are recommended for the effect of uncultured Senotrophomonas sp. or Escherichia hermannii on diesel degradation.

Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design

  • Imron, Muhammad Fauzul;Titah, Harmin Sulistiyaning
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.374-382
    • /
    • 2018
  • Petroleum hydrocarbons pollutants, such as diesel fuel, have caused ecosystem damage in terrestrial and aquatic habitats. They have been recognized as one of the most hazardous wastes. This study was designed to optimize the effect of Tween 80 concentration, nitrogen (N)/phosphorus (P) ratio and salinity level on diesel biodegradation by Vibrio alginolyticus (V. alginolyticus). Response surface methodology with Box-Behnken design was selected with three factors of Tween 80 concentration (0, 5, 10 mg/L), N/P ratio (5, 10, 15) and salinity level (15‰, 17.5‰, 20‰) as independent variables. The percentage of diesel degradation was a dependent variable for 14 d of the remediation period. The results showed that the percentages of diesel degradation generally increased with an increase in the amount of Tween 80 concentration, N/P ratio and salinity level, respectively. The optimization condition for diesel degradation by V. alginolyticus occurred at 9.33 mg/L of Tween 80, 9.04 of N/P ratio and 19.47‰ of salinity level, respectively, with percentages of diesel degradation at 98.20%. The statistical analyses of the experimental results and model predictions ($R^2=0.9936$) showed the reliability of the regression model and indicated that the addition of biostimulant can enhance the percentage of diesel biodegradation.

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

혐기성 슬러지를 첨가한 오염 토양에서 저자 수용체 조건에 따른 디젤 분해 및 미생물 군집 변화

  • 이태호;최선열;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.207-210
    • /
    • 2004
  • Effect of electron accepters on anaerobic degradation of petroleum hydrocarbons by an anaerobic sludge taken from a sludge digestion tank in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested. Treatments of soil with 30 mL of the digestion sludge (2,000 mg/L of vss (volatile suspended solids)) were incubated under several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters conditions for 120 days. Treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to control treatments with an autoclaved sludge and without the sludge. The amount of TPH degradation after 120days incubation was the largest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) followed in order by sulfate reducing, nitrate reducing, methanegenic condition as 67%, 53%, 43%, respectively. However, the rate of TPH degradation in the nitrate- and sulfate reducing condition within 105 days were comparable with that of the mixed electron accepters condition. Microorganisms in each electron acceptor condition were plated on solid mediums containing nitrate or sulfate as sole electron acceptor and several nitrate- and sulfate reducing bacteria showed effective degradation of diesel fuel within 30 days incubations. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

  • PDF

Fundamental Study on Degradation Evaluation of Marine Diesel Engine Exhaust Valve by Nondestructive Test (비파괴법에 의한 선박용 디젤엔진 배기밸브의 열화도 평가에 관한 기초적 연구)

  • Sim, K.H.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.51-56
    • /
    • 1999
  • The ultrasonic method, which is well known as nondestructive test method, is widely used to evaluate the material damage due to degradation. However, this method is just used for measuring the crack size and the thickness loss of the tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of marine diesel engine exhaust valve and to suggest the correlations between the ultrasonic characteristics and valve degradation. From the evaluation of the results obtained, the technique of using the ultrasonic property was founds to be a efficient method to evaluate the degree of marine diesel engine exhaust valve by nondestructive test.

  • PDF

Fundamental Study on Degradation Evaluation of Marine Diesel Engine Exhaust Valve by Time-frequency Analysis Method (II) (시간-주파수 해석법을 이용한 선박용 디젤엔진 배기밸브의 열화도 평가에 관한 기초적 연구 (II))

  • 김현수;심규현;안석환;남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.68-72
    • /
    • 2000
  • The ultrasonic method, which is well known as nondestructive test method, is widely used to evaluate the material damage due to degradation. However, this method is just used for measuring the crack size and the thickness loss of the tube. The purpose of this study is to investigate the application of the ultrasonic technique for the evaluation of marine diesel engine exhaust valve and to suggest the correlation between the ultrasonic characteristics and valve degradation. From the evaluation of the results obtained, the technique of using the ultrasonic property was founds to be a efficient method to degree of marine diesel engine exhaust valve by nondestructive test.

  • PDF