• Title/Summary/Keyword: dieless drawing

Search Result 5, Processing Time 0.022 seconds

A Study on the Dieless Wire Drawing Using Microwave (마이크로웨이브를 이용한 Dieless Wire Drawing 에 대한 연구)

  • Huh You;Kim S.H.;Kim J.S.;Kim I.S.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.942-945
    • /
    • 2005
  • Micron-sized metal wires are widely used in industries such as filtration, catalyst and composite materials, etc. In the wire drawing process, the die that is used conventionally is an effective and, at the same time, sensitive component. However, a typical array of the dies has caused many problems in the wire drawing process, e.g., large frictional force on the interface between wire and the resulting high heat generation, precise adjustment of the dies, extended cooling system, die abrasion, etc.. Because of these problems, there have been many works that are aiming at improving the efficiency of wire drawing process by analyzing the die geometry and by applying advanced die material to prolong the die life or even at developing a dieless wire drawing system. This paper is dealing with developing a new wire drawing system that is applicable to reduce the wire drawing steps with high draw ratio. The new wire drawing system does not use the dies, but use the self-induced heater that works on the basis of the resonant phenomenon of wire material. The electromagnetic wave is the heating source. The results of the study on the diameter reduction and microwave flow analysis show that the heating effectiveness of the wire is influenced by the energy distribution in the microwave propagation chamber. We can obtain diameter-reduced wires by using microwave in the dieless drawing process. Microwave as a heating source is capable of producing wires without applying dies in wire drawing process.

  • PDF

Multi-Point Dieless Sheet Forming Technology Combined with Fluid forming (유체성형과 결합한 다점 무금형 판재 성형기술)

  • 박종우;홍예선;양승훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.58-61
    • /
    • 2002
  • A new concept of dieless sheet forming technology is proposed in this study to overcome the drawback of conventional dieless forming technology. For this purpose, dual points contact of the conventional punch system, which is a primary cause of surface defects, is replaced to single point contact using technology combined with fluid forming. It is expected that the advanced system may lead to easy displacement control of multi-punch elements, reducing surface defects, and increasing decision and forming limits. The reduced number of punch elements also saves the cost of the equipment. In addition, the new technology can be utilized for deep drawing as well as two- or three-dimensional curved surface forming, and thereby become multi-functional and multi-purpose differently from the conventional technology.

  • PDF

Dieless Wire Drawing by Enforced Necking Method (강제 네킹에 의한 금속 와이어 인발)

  • Huh, You;Kim, Seung-Hoon;Kim, Ihn-Seok;Paik, Young-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.98-105
    • /
    • 2007
  • In modern industries, materials are required that possess multi-functional properties and at the same time flexibility in their shapes with structural stability. The major technology realizing this requirement consists of thinning metal wires and laying them with stable contact nodes. This research has dealt with a new method to manufacture thin wires by drawing without applying dies, but with introducing enforced necking, which enables to process multi-ends. Based on the new method, the process dynamics was modelled and its steady-state characteristics were analyzed. Results showed that the profiles of the material velocity in the drawing zone increased with a downward convex shape, while the cross-sectional area decreased with the shape of upward convex. The microwave heating turned out to be effective in wire drawing, but dependent on the input feeding direction. The variation in the diameters of the drawn wires was negatively affected by increasing the drawing ratio.