• 제목/요약/키워드: dielectric moisture meter

검색결과 9건 처리시간 0.018초

Effects of Density, Temperature, Size, Grain Angle of Wood Materials on Nondestructive Moisture Meters

  • Pang, Sung-Jun;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.40-50
    • /
    • 2019
  • The aim of this study was to investigate the effects of density, temperature, size, and grain direction on measurement of moisture contents (MC) of wood materials non-destructively. The MC of different sizes of solid wood, glulam, and CLT from larch (larix kaempferi, $560kg/m^3$) and pine (pinus koraiensis, $430kg/m^3$) were measured using the dielectric type and resistance type meters. The specimens were conditioned in the environmental chamber to be equilibrium moisture content (EMC) of 12 % and 19 %. When density setting in dielectric type meter was increased from $400kg/m^3$ to $600kg/m^3$, the MCs of specimen (S-L-100-E) were decreased from 13.4 % to 11.3 %. However, when wood group (WG) setting in resistance type meter was changed from WG1 to WG4, the measured MCs were increased from 9.2 % to 12.3 %. When temperature setting in resistance type meters was changed from 0 to $35^{\circ}C$, the MC was decreased from 17.0 % to 13.0 %. The MCs measured by dielectric type meter for larger specimens (S-L-100-E_11.3 %, G-L-240-E_11.7 % and C-L-120-E_12.8 %) were higher than those of small size specimens (S-L-30-E_8.7 %, G-L-150-E_10.3 %, and C-L-90-E_9.7 %). The MCs measured by resistance type meter for larger specimens (G-L-240-E_11.6 % and C-L-120-E_13.3 %) were also higher than those of small size specimens (G-L-150-E_10.4 %, and C-L-90-E_11.8 %). The resistance type meter was not affected by the grain direction but the dielectric type meter were affected by the grain direction. The MC measured by resistance type meter for G-L-120-E perpendicular to grain direction was 11.5 % and the measured MC parallel to grain direction was 11.3 %. The MC measured by dielectric type meter parallel to grain direction (12.1 %) was higher than that measured perpendicular to grain direction (10.7 %).

휴대용 유전율식 수분계를 이용한 목재의 전건밀도 추정 (Estimation of Wood Oven-Dry Density by Using a Portable Dielectric Moisture Meter)

  • 강춘원;임호묵;강호양
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.629-639
    • /
    • 2017
  • 현재 합천 해인사에 보관되어 있는 고려속장경(일명 팔만대장경)은 역사적 가치나 규모면에 있어서 세계적인 문화재이나 아직도 어떤 수종으로 만들어졌는지 모르고 있다. 중요한 문화재이기 때문에 손상없이 비파괴적으로 수종을 추정하는 방법이 필요하다. 밀도를 알게 되면 수종을 추정하기 쉽다. 유전율식 목재수분계의 원리를 역으로 이용하면 함수율을 알고 있는 목재의 전건밀도를 얻을 수 있다는데 착안하여 연구를 수행하였다. 국내산 100여 개 수종, 122개 재감의 전건밀도를 치수법과 유전율식 목재수분계 추정법으로 구하여 두 계수의 상관관계와 회귀식을 찾았으며 문헌자료를 이용하여 회귀식의 유의성을 검정하였다. 치수법으로 측정한 전건밀도와 유전율식 목재수분계로 추정한 전건밀도는 매우 높은 상관관계를 나타냈다. 이 관계식을 이용하면 팔만대장경판의 전건밀도를 추정할 수 있으며 나아가 수종을 예측할 수 있을 것이다.

마이크로파 자유공간 전송을 이용한 산물벼 함수율 측정장치 개발 (Development of Moisture Content Measurement Device for Paddy Rice using Microwave Free Space Transmission)

  • 김기복;김종헌;노상하
    • Journal of Biosystems Engineering
    • /
    • 제24권3호
    • /
    • pp.235-242
    • /
    • 1999
  • This study was conducted to develop a grain moisture meter using microwave free space transmission technique at X-band frequency. The 10.5GHz microwave oscillator using a dielectric resonator was designed and fabricated to transmit electromagnetic wave through standard horn antenna to a sample holder with the wetted Hwasung and Chuchung rough rice(12.00∼26.25%). To detect the output voltage of transmitted wave from receiving horn antenna, the detector was composed of shottkey diode and RF impedance matching circuit. The regression model for measurement of grain moisture content was developed. Its correlation coefficient and standard error of prediction (SEP) were found to be 0.9882 and 0.657 respectively between measure and predicted moisture contents.

  • PDF

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

Humidity Sensor Using an Air Capacitor

  • Choi, Jin Moon;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.182-186
    • /
    • 2013
  • We studied the possibility that an air capacitor can be used as a humidity sensor by measuring capacitance change. In order to investigate the possibility, the change of capacitance of an air capacitor due to moisture in air was first considered theoretically, and was then experimentally verified. The capacitance was measured by an LCR impedance meter with a 100-kHz and 1-V ac. The results revealed that the changes in the experimentally measured capacitances were greater than those in the theoretically calculated values. Based on this fact, we knew that an air capacitor could be used as part of a humidity sensing device. We expect the humidity sensor with an air capacitor has characteristics of fast response time, high reliability, and high durability compared with other conventional methods.

산물벼 함수율 측정을 위한 $2{\times}2$ 마이크로스트립 패치 안테나 개발 (A $2{\times}2$ Microstrip Patch Antenna Array for Moisture Content Measurement of Paddy Rice)

  • 김기복;김종헌;노상하
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.97-106
    • /
    • 2000
  • To develop the grain moisture meter using microwave free space transmission technique, a 10.5GHz microwave signal with the power of 11mW generated by an oscillar with a dielectric resonator is transmitted to an isolator and radiated from a transmitting $2{\times}2$ microstrip patch array antenna into the sample holder filled with the 12 to 26%w.b. of Korean Hwawung paddy rice. the microwave signal, attenuated through the grain with moisture, is collected by a receiving $2{\times}2$ microstrip patch array antenna and detected using a Shottky diode with excellent high frequency characteristic. A pair of light and simple microstrip patch array antenna for measurement of grain moisture content is designed and implemented on atenflon substrate with trleative dielectric constant of 2.6 and thickness of 0.54 by using Ensemble ver. 4.02 software. The aperture of microstrip patch arrays is 41 mm width and 24mm high. The characteristics of microstrip patch antenna such as grain. return loss, and bandwidth are 11.35dBi, -38dB and 0.35GHz($50^{\circ}$ at far-field pattern of E and H plane. The width of the sample holder is large enough to cover the signal between the antennas temperature and bulk density respectively. The calibration model for measurement of grain moisture content is proposed to reduce the effects of fluectuations in bulk density and temperature which give serious errors for the measurements . From the results of regression analysis using the statistically analysis method, the moisture content of grain samples (MC(%)) is expressed in terms of the output voltage(v), temperature (t), and bulk density of samples(${\rho}b$)as follows ;$$MC(%)\;=\;(-3.9838{\times}10^{-8}{\times}v^{3}+8.023{\times}10^{-6}{\times}v^{2}-0.0011{\times}v-0.0004{\times}t+0.1706){\frac{1}{{\rho}b}}{\times}100$ Its determination coefficient, standard error of prediction(SEP) and bias were found to be 0.9855, 0.479%w.b. and -0.0.369 %w.b. respectively between measured and predicted moisture contents of the grain samples.

  • PDF