• Title/Summary/Keyword: dielectric barrier discharge

Search Result 298, Processing Time 0.027 seconds

Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment (수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

A Study on the Microorganism Disinfection and Characteristics of Discharged Water of Dielectric Barrier Discharge Plasma Systems (유전체 장벽 방전 플라즈마 방전수의 특성과 미생물 소독에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • Objectives: This experiment was carried out to elucidate the effect of discharged water on the disinfection of $Phytophthora$ $capsici$ and evaluate the water characteristics. Methods: The dielectric barrier discharges (DBD) plasma reactor system used in this study consisted of a plasma component [discharge, ground electrode and quartz dielectric tube], high voltage source, and air supply. The effects of water characteristics such as pH, ORP and conductivity and the disinfection effect of discharged water were investigated. Results: Experimental results showed that in the process of discharge, the pH decreased, whereas ORP and electric conductivity increased. When the discharge time was 30 min, $Phytophthora$ $capsici$ of 2.94 log was disinfected within 300 seconds. Disinfection performance of stored discharged water was maintained for three days; however the disinfection effect vanished after five days. When $Phytophthora$ $capsici$ was injected into the discharged water, the disinfection effect decreased after two days. Conclusions: It is considered that the main disinfection parameters of the discharged water were chemically active species such as $H_2O_2$ and $O_3$ and high ORP.

Inactivation of Sewage Microorganisms using Multi-Plasma Process (멀티 플라즈마 공정을 이용한 하수 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.985-993
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor, a multi-plasma reactor was investigated for the inactivation of microorganisms in sewage. We also considered the possibility of degradation of non-biodegradable matter ($UV_{254}$) and total organic carbon (TOC) in sewage. The multi-plasma reactor in this study was divided into high voltage neon transformers, gas supply unit and three plasma modules (consist of discharge, ground electrode and quartz dielectric tube). The experimental results showed that the inactivation of microorganisms with treated water type ranked in the following order: distilled water > synthetic sewage effluent >> real sewage effluent. The dissolved various components in the real sewage effluent highly influenced the performance of the inactivation of microorganisms. After continuous plasma treatment for 10 min at 180 V, residual microorganisms appeared below 2 log and $UV_{254}$ absorbance (showing a non-biodegradable substance in water) and TOC removal rate were 27.5% and 8.5%, respectively. Therefore, when the sewage effluent is treated with plasma, it can be expected the inactivation of microorganisms and additional improvement of water quality. It was observed that the $NH_4{^+}$-N and $PO{_4}^{3-}$-P concentrations of sewage was kept at the constant plasma discharging for 30 min. On the other hand, $NO_3{^-}$-N concentration was increased with proceeding of the plasma discharge.

Removal Characteristics of Benzene in Dielectric Barrier Discharge Process

  • Chung, Jae-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.13-20
    • /
    • 2002
  • The electrical and chemical properties of the dielectric barrier discharge (DBD) process for the benzene removal were investigated. The benzene removal was initiated with the applied voltage higher than the discharge onset value. The removal efficiency over 95 % was obtained at approximately 1.6 kJ lite $r^{r-1}$ of the electrical energy density. The increase of the inlet concentration decreased the removal efficiency. However, the benzene decomposition rate increased with the inlet concentration . While the increase of the gas retention time enhanced the removal efficiency, the decomposition rate decreased. Identification of the optimum condition between the decomposition rate and the removal efficiency is required for field applications of the DBD process.s.

NO Removal Characteristics in $N_2$ for a Dielectric Barrier Discharge Reactor with the Variation of a Discharge Gap (유전체 장벽 방전 반응기에서 방전 간극의 변화에 따른 질소 분위기하의 NO 제거 특성)

  • 차민석;이재옥;신완호;송영훈;김석준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.407-408
    • /
    • 2000
  • 유전체 장벽 방전 반응기 (Dielectric Barrier Discharge (DBD) Reactor)를 이용한 비열 플라즈마(Non-thermal plasma) 공정에서 NO 제거 특성을 실험적으로 연구하였다. 질소 분위기에서 전자에 의한 NO 의 제거는 $N_2$ + e $\longrightarrow$ N + N + e 반응에 의한 질소의 전자충돌해리 (electron-impact dissociation)와 이 반응에 의하여 생성된 질소원자에 의한 NO 의 환원반응 N + NO $\longrightarrow$ $N_2$ + O 으로 설명될 수 있으며, 이로 인하여 $O_2$$H_2O$ 의 첨가에 따른 부산물(O, $O_3$, OH 등)에 의한 산화반응이 주로 일어나는 경우 (XO + NO $\longrightarrow$ X + NO$_2$) 와는 달리 NO 제거에 소모된 에너지를 평가하기에 용이한 장점이 있다(Penetrante et al., 1995). (중략)

  • PDF

Atmospheric Pressure Plasma Ashing of Photoresist Using Pin to Plate Dielectric Barrier Discharge

  • Park, Jae-Beom;Oh, Jong-Sik;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1500-1503
    • /
    • 2009
  • In this paper, we studied about atmospheric pressure remote plasma ashing of photoresist(PR), by using a modified dielectric barrier discharge(DBD). The effect of various gas combinations such as $N_2/O_2$, $N_2/O_2+SF_6$ on the changes PR ashing rate was investigated as a function of power. The maximum PR ashing rate of 1850 nm/min was achieved at $N_2$ (70 slm)/ $O_2$ (200 sccm) + $SF_6$ (3 slm). We found that as the oxygen and fluorine radical peaks were increased, the ashing rate is increased, too.

  • PDF

Bidirectional Pulse Power Supply for Dielectric Barrier Discharge (유전체 장벽 방전을 위한 양방향 펄스 전원장치)

  • Shin, Wan-Ho;Hong, Won-Seok;Jeoung, Hwan-Myoung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1521-1523
    • /
    • 2005
  • High voltage plasma power supply was adopted to control polluted gases and an ozone generation. Bidirectional pulse power supply consisted of power semiconductor switch devices, a high voltage transformer, and a control board adapted switching method. Plasma power supply with sinusoidal bidirectional pulse, which has output voltage range of 0-20kV and output frequency range of 1kHz-20kHz, is realized. Using proposed system, pulsed high voltage/high frequency discharges were tested in a DBD(dielectric barrier discharge) reactor, and the spatial distribution of a glow discharge was observed. The system showed stable operational characteristics, even though the voltage and the frequency increased. Above features were verified by experiments.

  • PDF

Inactivation of Zooplankton Artemia sp. Using Plasma Process (플라즈마 공정을 이용한 동물성 플랑크톤 Artemia sp. 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.

Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation (토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

Decomposition of Ethylene by Using Dielectric Barrier Discharge Plasma (유전체 배리어 방전 플라즈마를 이용한 에틸렌의 분해)

  • Jang, Doo Il;Lim, Tae Hun;Lee, Sang Baek;Mok, Young Sun;Park, Hoeman
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.608-613
    • /
    • 2012
  • Dielectric barrier discharge plasma reactor was applied to the removal of ethylene from a simulated storage facility ($1.0m^3$) of fruits and vegetables. The system operated in a closed-loop mode by feeding the contaminated gas to the plasma reactor and recirculating the treated gas back to the storage facility. The experiments were carried out with parameters such as discharge power, circulation flow rate, initial ethylene concentration and treatment time. The rate of ethylene decomposition was mainly controlled by the discharge power and the treatment time. With the other conditions kept constant, the ethylene decomposition rate in the presence of the manganese oxide ozone control catalyst installed downstream from the plasma reactor was lower than that in the absence of it. The suggests that unreacted ozone from the plasma reactor accumulated in the storage facility where it additionally decomposed ethylene. On the basis of an initial ethylene concentration of 50 ppm, the energy requirement for completing the decomposition was about 60 kJ.