• 제목/요약/키워드: dielectric barrier discharge

검색결과 299건 처리시간 0.029초

TiO2 또는 MgO 첨가에 따른 마이크로 유전격벽방전 셀의 방전특성 연구 (A Study on the Discharge Characteristics of Micro Dielectric Barrier Discharge Cells by Adding TiO2 or MgO Powder)

  • 한창욱;위성석;이돈규
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1587-1591
    • /
    • 2015
  • For a higher definition discharge cell, the method of high speed addressing is necessary. In order to modify the surface charges, the liquefied $TiO_2$ or MgO powder is added on MgO layer in front glass and on the phosphor in rear glass in micro barrier discharge. Both the electro-optical properties and the discharge time lag characteristics are measured from 4 inch. test panel, such as the discharge voltage, current, luminance, luminous efficacy and discharge time lag. As the results, the statistic time lag is improved by about 40 %.

대기압 유전체배리어방전의 발광특성 (Optical Emission Characteristics of Atmospheric Pressure Dielectric Barrier Discharge)

  • 김진기;김윤기
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.100-106
    • /
    • 2015
  • Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5-9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.

평판형 유전체 장벽 방전 반응기에서 Acetonitrile의 분해 특성 (Decomposition of Acetonitrile by Planar Type Dielectric Barrier Discharge Reactor)

  • 송영훈;김관태;류삼곤;이해완
    • 한국군사과학기술학회지
    • /
    • 제5권3호
    • /
    • pp.105-112
    • /
    • 2002
  • A combined process of non-thermal plasma and catalytic techniques has been investigated to treat toxic gas compounds in air. The treated gas in the present study is $CH_3$CN that has been known to be a simulant of toxic chemical agent. A planar type dielectric barrier discharge(DBD) reactor has been used to generate non-thermal plasma that produces various chemically active species, O, N, OH, $O_3$, ion, electrons, etc. Several different types of adsorbents and catalysts, which are MS 5A, MS 13X, Pt/alumina, are packed into the plasma reactor, and have been tested to save power consumption and to treat by-products. Various aspects of the present techniques, which are decomposition efficiencies along with the power consumption, by-product analysis, reaction pathways modified by the adsorbents and catalysts, have been discussed in the present study.

Dielectric barrier discharge 플라즈마 펄스 레이져 증착법을 통해 성장한 nitrogen 도핑 된 산화아연 박막의 광학적 특성 (Optical properties of nitrogen doped ZnO thin films grown by dielectric barrier discharge plasma-assisted pulsed laser deposition)

  • 이득희;김상식;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1256_1257
    • /
    • 2009
  • We have grown, for the first time to our knowledge, N-doped ZnO thin films on sapphire substrate by employing novel dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting to find a dominant acceptor-bound exciton peak ($A^0X$) that indicates the successful p-type doping of ZnO with N.

  • PDF

배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율 (Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge)

  • 강석훈;지준호;변정훈;황정호
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1542-1547
    • /
    • 2003
  • Although dielectric barrier discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs (Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by an electrostatic precipitator (ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl(20∼100nm) and DOS (50∼500nm) were generated by a tube furnace and an atomizer, respectively. For experimental conditions of 60㎐, 11㎸ and 60 lpm, the particle collection efficiency for the hybrid system was over 85%, based on the number of particles captured.

Dry Etch Process Development for TFT-LCD Fabrication Using an Atmospheric Dielectric Barrier Discharge

  • Choi, Shin-Il;Kim, Sang-Gab;Choi, Seung-Ha;Kim, Shi-Yul;Kim, Sang-Soo;Lee, Seung-Hun;Kwon, Ho-Cheol;Kim, Gon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1272-1275
    • /
    • 2008
  • We present the development of dry etch process for the liquid crystal display (LCD) fabrication using a dielectric barrier discharge (DBD) system at atmospheric pressure. In this experimental work, the dry etch characteristics and the electrical properties of thin film transistor are evaluated by using the scanning electron microscopy and electric probe, and TFT-LCD panel ($300\;mm\;{\times}\;400\;mm$) is manufactured with the application of the amorphous silicon etch step in the 4 mask and 5 mask processes.

  • PDF

배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율 (Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge)

  • 강석훈;변정훈;지준호;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1435-1440
    • /
    • 2003
  • Although Dielectric Barrier Discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs(Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by electrostatic precipitator(ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl($20{\sim}100$ nm) and DOS($50{\sim}800$ nm) were generated by tube furnace and atomizer, respectively. For experimental conditions of 60 Hz, 11 kV, and 60 lpm, the particle collection efficiency for the hybrid system comprising DBD charger and ESP was over 85 %, based on the number of particles captured.

  • PDF

유전체 방전을 이용한 확산화염에서의 매연저감 특성 (Soot Reduction in Diffusion Flames Using Dielectric Barrier Discharge)

  • 차민석;김관태;정석호;이상민
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • The effect of non-thermal plasma on diffusion flames in co-flow jets has been studied experimentally by adopting a dielectric barrier discharge technique. The generation of streamers was enhanced with a flame due to increased reduced electric fields by high temperature burnt gas and the abundance of ions in the flame region. The effect of streamers on flame behavior reveals that the flame length was significantly decreased as the applied voltage increased and the yellow luminosity by the radiation of soot particles was also significantly reduced. The formation of PAH and soot was influenced appreciably by the non-thermal plasma, while the flame temperature and the concentration of major species were not influence much with the plasma generation. The results demonstrated that the application of non-thermal plasma can be a viable technique in controlling soot generation in flames with low power consumption in the order of 1 W.

  • PDF

평판형 유전체 장벽 방전 반응기에서 충진물질에 따른 아세토나이트릴의 분해 특성 (Decomposition of Acetonitrile Using a Planar Type Dielectric Barrier Discharge Reactor Packed with Adsorption and Catalyst Materials)

  • 김관태;송영훈;김석준
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.157-165
    • /
    • 2003
  • A combined process of non-thermal plasma and catalytic technique has been investigated to treat $CH_3$CN gas in the atmosphere. A planar type dielectric barrier discharge (DBD) reactor has been used to generate the non-thermal plasma that produces various chemically active species, such as O, N, OH, $O_3$, ion, electrons, etc. Several different types of the beads. which are Molecular Sieve (MS) 5A, MS 13X, Pt/alumina beads, are packed into the DBD reactor, and have been tested to characterize the effects of adsorption and catalytic process on treating the $CH_3$CN gas in the DBD reactor. The test results showed that the operating power consumption and the amounts of the by-products of the non-thermal plasma process can be reduced by the assistance of the adsorption and catalytic process.

Effect of dielectric barrier discharge parameters on degradation efficiency of ethyl acetate

  • Deng, Xu;Lu, SiHeng;Zheng, Kun;Yu, ZhiMin
    • 도시과학
    • /
    • 제8권2호
    • /
    • pp.13-18
    • /
    • 2019
  • Using self-made coil dielectric barrier discharge reactor, the removal efficiency of ethyl acetate under simulated experimental parameters such as initial concentration of waste gas, total flow rate, relative humidity and voltage was investigated. The results show that the degradation rate of ethyl acetate increases with the increase of output voltage. When other conditions remain unchanged, the degradation rate decreases with the increase of initial concentration of ethyl acetate; with the increase of total flow rate, the degradation rate of ethyl acetate decreases; with the increase of relative humidity, the degradation rate first increases and then decreases, and when the relative humidity is 64%, the degradation efficiency is the highest.