• Title/Summary/Keyword: dielectric barrier

Search Result 464, Processing Time 0.03 seconds

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

Pulse Density Modulated Zero Voltage Soft-Switching High-Frequency Inverter with Single Switch for Xenon Gas Dielectric Barrier Discharge Lamp Dimming

  • Sugimura, Hisayuki;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • This paper presents soft switching zero voltage switching high frequency inverter for rare gas fluorescent lamp using dielectric-barrier discharge phenomenon. The simple high-frequency inverter can completely achieve stable zero voltage soft switching (ZVS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZVS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this high frequency Inverter are illustrated as compared with computer simulation results and experimental ones. Its light dimming characteristics due to power regulation scheme are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proven from the practical point of view.

  • PDF

A Study of The Surface Dielectric Barrier Discharge Design Conditions for Generating Negative Air Ions (음이온 생성을 위한 표면 유전체장벽방전의 설계조건 연구)

  • Shin, Sang-Moon;Kim, Jung-Yoon;Kim, Jong-Soo;Choi, Jae-Ha;Choi, Won-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.114-122
    • /
    • 2014
  • This paper describes a study of the design conditions of a planar surface dielectric barrier discharge (DBD) reactors for generating negative air ions. The capacity of negative air ion generated by the surface DBD reactor is affected by the shape, area ratio and the location of the discharge and induction electrodes of it. To study the optimal design conditions of DBD reactors, the electrodes printed on the substrate of a PCB board is utilized to conduct kind of experiments: the distance of the each electrode along with the X-Y axis, the area ratio of the discharge electrode to induction electrode, and the symmetrical and asymmetrical location of two electrodes. The ion generation capacity is inverse proportional to the gap increases along with X-Y axis. And the optimum ion concentration generated by the ionizer was inspected when the electrodes area ratio was 3 and 5 times of the symmetrical and asymmetrical experimental condition respectively.

SF6 and O2 Effects on PR Ashing in N2 Atmospheric Dielectric Barrier Discharge

  • Jeong, Soo-Yeon;Kim, Ji-Hun;Hwang, Yong-Seuk;Kim, Gon-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.204-209
    • /
    • 2006
  • Photo Resist (PR) ashing process was carried out with the atmospheric pressure- dielectric barrier discharge (ADBD) using $SF_6/N_2/O_2$. Ashing rate (AR) was sensitive to the mixing ratio of the oxygen and nitrogen of the blower type of ADBD asher. The maximum AR of 5000 A/min was achieved at 2% of oxygen in the $N_2$ plasma. With increasing the oxygen concentration to more than 2% in the $N_2$ plasma, the discharge becomes weak due to the high electron affinity of oxygen, resulting in the decrease of AR. When adding 0.5% of SF6 to $O_2/N_2$ mixed plasma, the PR AR increased drastically to 9000 A/min and the ashed surface of PR was smoother compared to the processed surface without $SF_6$. Carbon Fluorinated polymer may passivate the PR surface. It was also observed that the glass surface was not damaged by the fluorine.

Surface treatment of sol-gel bioglass using dielectric barrier discharge plasma to enhance growth of hydroxyapatite

  • Soliman, Islam El-Sayed;Metawa, Asem El-Sayed;Aboelnasr, Mohamed Abdel Hameed;Eraba, Khairy Tohamy
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2452-2463
    • /
    • 2018
  • Surface treatment of sol-gel bioglass is required to increase its biomedical applications. In this study, a dielectric barrier discharge (DBD) plasma treatment in atmospheric pressure was performed on the surface of [$SiO_2-CaO-P_2O_5-B_2O_3$] sol-gel derived glass. The obtained bioglass was treated by plasma using discharge current 12 mA with an exposure period for 30 min. The type of discharge can be characterized by measuring the discharge current and applied potential waveform and the power dissipation. Apatite formation on the surface of the DBD-treated and untreated samples after soaking in simulated body fluid (SBF) at $37^{\circ}C$ is characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), inductively coupled plasma (ICP-OES) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). We observed a marked increase in the amount of apatite deposited on the surface of the treated plasma samples than those of the untreated ones, indicating that DBD plasma treatment is an efficient method and capable of modifying the surface of glass beside effectively transforming it into highly bioactive materials.

Inactivation of Wilt Germs (Fusarium oxysporum f. sp. radicis lycopersici) using Dielectric Barrier Discharge Plasma in Hydroponic Cultivation System (양액재배 시스템에서 유전체장벽방전 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp. radicis lycopersici)의 불활성화)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.495-502
    • /
    • 2019
  • This study was conducted to investigated the possibility of inactivating wilt germs (Fusarium oxysporum f. sp. radicis lycopersici) using Dielectric Barrier Discharge (DBD) plasma in a hydroponic system. Recirculating hydroponic cultivation system for inactivation was consisted of planting port, LED lamp, water tank, and circulating pump for hydroponic and DBD plasma reactor. Two experiments were conducted: batch and intermittent continuous process. The effect of plasma treatment on Total Residual Oxidants (TRO) concentration change, Fusarium inactivation and growth of lettuce were investigated. In the batch experiment, most of the Fusarium was inactivated at a TRO concentration of 0.15 mg/L or more at four-day intervals. There was no change in lettuce growth after two times of plasma treatment for one week. The intermittent continuous experiment consisted of 30-minute, 60-minute, and 90-minute plasma treatment in 2 day intervals and 30-minute treatment a one-day; most of the Fusarium was inactivated only by treatment for 30-minute every two days. However, if inactivation under $10^1CFU/mL$ is required, it will be necessary to treat for 60 minutes in 2 day intervals. The plasma treatment caused no damage to the lettuce, except the 30 min plasma treatment ay the one-day interval. It was considered that the residual TRO concentration was higher than that of the other treatments.

Semi-Permanent Hydrophilization of Polyester Textile by Polymerization and Oxidation Using Atmospheric Pressure Dielectric Barrier Discharge (APDBD)

  • Se Hoon Shin;Yoon Kee Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.115-123
    • /
    • 2023
  • In this paper, we report and discuss the semi-permanently hydrophilic (SPH) treatment of polyester fabric using plasma polymerization and oxidation based on atmospheric pressure dielectric barrier discharge (APDBD) technology. SiOxCy(-H) was coated on polyester fabric using Hexamethylcyclotrisiloxane (HMCTSO) as a precursor, and then plasma oxidation was performed to change the upper layer of the thin film to SiO2-like. The degradation of hydrophilicity of the SPH polyester fabrics was evaluated by water contact angle (WCA) and wicking time after repeated washing. The surface morphology of the coated yarns was observed with scanning electron microscopy, and the presence of the coating layer was confirmed by measuring the Si peak using energy dispersive x-ray spectroscopy. The WCA of the SPH polyester fabric increased to 50 degrees after 30 washes, but it was still hydrophilic compared to the untreated fabric. The decrease in hydrophilicity of the SPH fabric was due to peeling of the SiOxCy(-H) thin film coated on polyester yarns.

Study of Nonvolatile Memory Device with $SiO_2/Si_3N_4$ stacked tunneling oxide (터널링 $SiO_2/Si_3N_4$ 절연막의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰)

  • Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.189-190
    • /
    • 2008
  • The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated. The band structure of stacked tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with that of the conventional tunneling barrier. The band-gap engineered tunneling barriers show the lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

  • PDF

A Study on the Discharge Characteristics of Micro Dielectric Barrier Discharge Cells by Adding TiO2 or MgO Powder (TiO2 또는 MgO 첨가에 따른 마이크로 유전격벽방전 셀의 방전특성 연구)

  • Han, Chang-Wook;Wi, Sung-Suk;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1587-1591
    • /
    • 2015
  • For a higher definition discharge cell, the method of high speed addressing is necessary. In order to modify the surface charges, the liquefied $TiO_2$ or MgO powder is added on MgO layer in front glass and on the phosphor in rear glass in micro barrier discharge. Both the electro-optical properties and the discharge time lag characteristics are measured from 4 inch. test panel, such as the discharge voltage, current, luminance, luminous efficacy and discharge time lag. As the results, the statistic time lag is improved by about 40 %.

Vertical β-Ga2O3 Schottky Barrier Diodes with High-κ Dielectric Field Plate (고유전율 필드 플레이트를 적용한 β-Ga2O3 쇼트키 장벽 다이오드)

  • Se-Rim Park;Tae-Hee Lee;Hui-Cheol Kim;Min-Yeong Kim;Soo-Young Moon;Hee-Jae Lee;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.298-302
    • /
    • 2023
  • In this paper, we discussed the effect of field plate dielectric materials such as silicon dioxide (SiO2), aluminum oxide (Al2O3), and hafnium oxide (HfO2) on the breakdown characteristics of β-Ga2O3 Schottky barrier diodes (SBDs). The breakdown voltage (BV) of the SBDs with a field plate was higher than that of SBDs without a field plate. The higher dielectric constant of HfO2 contributed to the superior reduction in electric field concentration at the Schottky junction edge from 5.4 to 2.4 MV/cm. The SBDs with HfO2 field plate showed the highest BV of 720 V, and constant specific on-resistance (Ron,sp) of 5.6 mΩ·cm2, resulting in the highest Baliga's figure-of-merit (BFOM) of 92.0 MW/cm2. We also investigated the effect of dielectric thickness and field plate length on BV.