• 제목/요약/키워드: die-cast AZ91D Mg alloy

검색결과 4건 처리시간 0.019초

플라즈마 전해 산화 처리조건에 따른 다이캐스트 AZ91D Mg 합금 위에 제조된 산화피막 특성 (Effect of Plasma Electrolytic Oxidation Conditions on Oxide Coatings Properties of Die-Cast AZ91D Mg Alloy)

  • 박성준;임대영;송정환
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.609-616
    • /
    • 2019
  • Oxide coatings are formed on die-cast AZ91D Mg alloy through an environmentally friendly plasma electrolytic oxidation(PEO) process using an electrolytic solution of $NaAlO_2$, KOH, and KF. The effects of PEO condition with different duty cycles (10 %, 20 %, and 40 %) and frequencies(500 Hz, 1,000 Hz, and 2,000 Hz) on the crystal phase, composition, microstructure, and micro-hardness properties of the oxide coatings are investigated. The oxide coatings on die-cast AZ91D Mg alloy mainly consist of MgO and $MgAl_2O_4$ phases. The proportion of each crystalline phase depends on various electrical parameters, such as duty cycle and frequency. The surfaces of oxide coatings exhibit as craters of pancake-shaped oxide melting and solidification particles. The pore size and surface roughness of the oxide coating increase considerably with increase in the number of duty cycles, while the densification and thickness of oxide coatings increase progressively. Differences in the growth mechanism may be attributed to differences in oxide growth during PEO treatment that occur because the applied operating voltage is insufficient to reach breakdown voltage at higher frequencies. PEO treatment also results in the oxide coating having strong adhesion properties on the Mg alloy. The micro-hardness at the cross-section of oxide coatings is much higher not only compared to that on the surface but also compared to that of the conventional anodizing oxide coatings. The oxide coatings are found to improve the micro-hardness with the increase in the number of duty cycles, which suggests that various electrical parameters, such as duty cycle and frequency, are among the key factors controlling the structural and physical properties of the oxide coating.

New Surface Treatment Process in Magnesium Alloy for Wheelchair

  • Han, Byung-Kuk
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.112-115
    • /
    • 2013
  • One of the most important characteristics of Mg alloys is the high ratio of strength to weight. This is why there is a high demand for applications with these alloys in the transportation industries to reduce the fuel consumption and to save energy. In addition, magnesium (and its alloys) is of considerable interest as a structural material, especially in the aerospace and automotive industries thanks to its low density. However, its major drawback is its high sensitivity to corrosion. Therefore, its use requires the application of a surface treatment. This study used a die-casted AZ91D Mg alloyand all the samples were annealed (in $120^{\circ}C$). The surface microstructure and phase distribution in thin-walled AZ91D magnesium components cast on a hot-chamber die-casting machine were investigated by optical microscopy and scanning electron microscopy. The reflectance differences in the bulk state comparison with the annealing state are caused by hydrogenation presence of the Mg layer under an oxidation surface layer.

Effect of Microporosity on Tensile Properties of As-Cast AZ91D Magnesium Alloy

  • 이충도
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.283-283
    • /
    • 1999
  • In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as d dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property far a range of microporosity, which was below about B %. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore. the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ9lD alloy.

Computer Simulation for Die Filling Behavior of Semi-Solid Slurry of Mg Alloy

  • Lee, Dock-Young;Moon, Jung-Hwa;Seok, Hyun-Kwang;Kim, Sung-Bin;Kim, Ki-Bae
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 본 연구에서는 Mg합금의 반응고성형 공정기술을 개발하기 위하여 여러 가지 전단속도와 냉각속도에 따른 Mg합금의 점도와 딕소트러픽 거동을 분석하였으며, 이를 전산모사연구와 비교 검토하였다. 전산모사연구에서는 미세조직과 공정변수를 고려한 반응고 슬러리의 유변학적 거동을 분석하였다. 반응고 온도영역에서의 Mg합금(AZ91D) 슬러리의 점도는 고상율에 따라 지수함수적으로 증가하였으며, 전단속도가 증가하면 감소하는 경향을 나타났다. Mg합금 슬러리의 유변학적 거동을 정확하게 분석하기 위하여 Carreau 모델을 사용하여 ANYCAST 프로그램에서 고압다이캐스팅용 금형으로의 Mg합금 반응고 슬러리의 충진거동을 모사하였다. 전산모사된 결과는 동일한 조건에서의 실제 실험결과와 잘 일치하였다.