• Title/Summary/Keyword: die-back

Search Result 167, Processing Time 0.023 seconds

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.57-64
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology fur their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electrodes nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud humping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Factors to Influence Thermal-Cycling Reliability of Passivation Layers in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 박막의 TC 신뢰성에 영향을 미치는 요인들)

  • Lee, Seong-Min;Lee, Seong-Ran
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.288-292
    • /
    • 2009
  • This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.

A Study on the Moulding Analysis of Automobile Valve Body Mid-plate (자동차 밸브바디 중간플레이트 성형해석에 관한 연구)

  • Jang Hun;Sung Back-Sub;Cha Yong-Hoon;Kim Duck-joong;Lee Youn-sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.174-179
    • /
    • 2005
  • In the super slow speed die casting process, the casting defects due to melt flow should be controlled in order to obtain sound casting products. The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. The calculation of simulation can produce very useful and important results. The calculation data of die casting process condition from the computer simulation by the Z-CAST is made to insure that the liquid metal is injected at the right velocity range and that the filling time is small enough to prevent premature solidification. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

A Study on the Inner Temperature Behaviors in the Casting Process for the Development of the Automatic Parts (자동차 부품 소재 개발에 따른 캐스팅 과정의 부품 내부온도 거동에 관한 연구)

  • Cha Young-Hoon;Sung Back-Sub;Jang Hoon;Kim Mi-Ai;Kim Jung-Dae;Kim Sun-Jun;Kim Duck-Joong;Lee Youn-Sin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.279-284
    • /
    • 2005
  • The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. In this thesis, the computer simulation analyzed the flow of molten metal. The quantitative analyses which proposed the effective mold design was executed Flow patterns of 0.15-0.16m/s molten metal in 15 mm thin plate casting were investigated in order to optimize die-casting process. As increasing ingate velocity in thin plate casting, cold shot was decreased. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

A study on the Turfan's costume in the period of Uighur (위구르(회골, Uighur)기의 투르판(토노번,Trufan) 복식연구)

  • 김소현
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.829-840
    • /
    • 1999
  • Ordinarily hair styles and headclothes show the racial characteristics. Uighur's men had let their long hair hang down their back in many queues, According to the order of estates men wore double high coronets hthree-pointed coronets from the headdress. Married women wore the felt headdress. The type of men's clothes were long caftans which had a round collar slits on the both sides and tight sleeves. They tied Chan Die belts and wore long boots. Women wore long tunics with everted collar which was decorated. Later the type of women's dress was changed into the long caftan. Late period of Turfan Uighur Mongol style had appeared.

  • PDF

Stamping Analysis and Die Design of Laser Welded Automotive Body (레이저 용접 차체의 성형해석과 금형설계)

  • Kim, Heon-Young;Shin, Yong-Seung;Kim, Koan-Hoi;Cho, Won-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.382-392
    • /
    • 1998
  • Computer simulations and test trials were carried out to obtain the optimal stamping conditions of the die design of the laser welded automotive body. The stamping process including gravity deflection bead calibration binder wrap, forming and spring back was simulated and compared with the results obtained from test trials. The production variables were determined from a preliminary operation and they were investigated in the simulation and the test trials. The formability was tested under the various conditions, such as the initial position of blank, blank holding force, corner radius and the shape of drawbead. Sound products without fracture, wrinkling and excessive weldline movement were produced by applying results obtained this investigation.

  • PDF

Experimental study on injection molding parts weight according to foam molding process (발포 성형 공정에 따른 사출 성형품 무게에 관한 실험적 연구)

  • Jung, Hyun-Suk;Hong, Cheong-Min;Lee, Ha-Seong;Kim, Sun-Yong
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.24-28
    • /
    • 2015
  • Speaking in general terms the form injection process can be described as a new process-variant of already known structural foam molding technology which roots go back to the early sixties. The most limiting factors of already know foaming processes are large cell size and the lack of uniformity of these cells as well and the inability to foam all kinds of plastic materials. In this paper, Process Study on weight change in injection rate during foaming. Experimental conditions were set as the injection speed 50,150,300 and 450 mm/s. The experiments PA, PA+GF, PP, was confirmed that the weight increase to PP+TA.

  • PDF

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • 김동진;김벙민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.198-203
    • /
    • 1995
  • In the paper, we have proposed a new technique to detemine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed totrain the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energyas well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of te neural network. The amount of incomplete filling in the die, load and forming energyas well as effective strain are measured by the rigid-plastic finite element method. The new technique is applied tofind the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determing the optimal billet of forging products, further it is usefully adapted to physical modeling for the forging design.

  • PDF

Optimization of Design Planning by Using the Spring Back Simulation of Auto Panels (스프링백 전산모사를 이용한 자동차 판넬의 설계공법 최적화)

  • Park, I.C.;Kim, Y.J.;Park, Y.C.;Lee, J.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.164-171
    • /
    • 2006
  • The die development of the high-strength steel sheet is very different with that of the common steel sheet. Especially, the springback problem of the high-strength steel is serious in the stamping process. This paper showed the optimized die development of the high-strength steel sheet which was based on the experimental measured and simulated springback auto panel stamping process.