• 제목/요약/키워드: die-back

검색결과 167건 처리시간 0.023초

두께가 얇은 냉간단조품의 스프링백 거동 및 저감설계 (Behavior and Reduction of Spring-back in a Thin Cold-Forged Product)

  • 김대원;신영철;최호준;윤덕재;이근안;김연구;임성주
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.397-402
    • /
    • 2012
  • The flange hub is a main component in an automotive steering system. In general, the flange hub are fabricated by mechanical machining, which is a process where material waste is inevitable. It is well-known that a net-shape cold forging cannot only reduce material waste but can also improve the mechanical strength of the final product. Thus, a forging process design was conducted for production of a flange hub. Significant spring-back occurs around the flange due to its small thickness in conjunction with the residual stresses after forging. In order to achieve the required dimensional accuracy, a process design with appropriate spring-back control is needed. In this study, a modification of the forging die was designed based on FE analysis with the purpose of spring-back compensation. Four kinds of different die designs were evaluated and the optimum design has two times less spring-back than the initial design. The compensation angle of the optimum design is 0.5 degrees. The results have been experimentally confirmed by cold forging of a flange hub and comparing the amount of spring-back between the actual component and the FE analysis.

Powder Forging of Rapidly Solidified hi-Si Alloy with Back Pressure

  • Kohno, T.;Kawase, K.;Otsuki, M.;Morimoto, K.
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.319-323
    • /
    • 1998
  • Powder forging with a back pressure was investigated for production of automobile and compressor parts made of a rapidly solidified Al-Si alloy powder. Disk-shaped green compacts made of a rapidly solidified Al-Si alloy powder were hot forged, and hubs were formed by loading back pressure on their top. The influences of the back pressure and die temperatures on forgeabiliy and properties of parts made of a rapidly solidified Al-Si alloy powder were examined. This method was also applied to the production of a scroll part. The results of these studies are summarized as follows : 1. A back pressure on the hub top is very effective for consolidation and preventing crack formation in the hub. 2. When a back pressure tess than 98 MPa is applied, the forging pressure increases by the same amount of the applied back pressure. With more than 98 MPa, the forging pressure increases further due to an increased friction at the hub side. 3. Die temperatures higher than approximately 670k are needed in order to consolidate well the hub top without cracks.

  • PDF

Development of the Practical and Adaptive Die of Piloting Stripper Type for sheet Metal(Part 2)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Yong-Seok;Park, Hae-Kyoung
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.114-117
    • /
    • 2000
  • In order to keep the zero defect of production in press working process. The optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and it's phenomena, die structure, machine tool working for die making, die materials and it's heat treatment, metal working in field, their know how tc. are included in those factors. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. Part 2 of this study reveals with precision progressive die design, its making and tryout.

  • PDF

레이저 다이싱에 의한 die strength 분석 (Analysis of die strength for laser dicing)

  • 이용현;최경진;배성창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.327-329
    • /
    • 2006
  • In this paper, the cutting qualities by laser dicing and fracture strength of a silicon die is investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bend test and is compared with the die strength by mechanical sawing. As a results, die strength by laser dicing shows a decrease of 50% in compared with die strength by mechanical sawing.

  • PDF

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming)

  • 권용철;이정환;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

자동차 바디용 알루미늄 도어 힌지 페이스 부품의 프레스 성형 최적화에 관한 연구 (A Study on the Optimization of Press Forming of Aluminum Door Hinge Face Parts in Automobiles)

  • 김석중;김민준;최원일;이춘규
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.47-54
    • /
    • 2023
  • The research direction of the automobile industry worldwide is speeding up research to improve fuel efficiency through weight reduction as the weight of automobiles increases due to environmental problems, convenience demands, and safety problems. As a way to solve weight reduction, there is a method of improving mechanical properties by improving the development and manufacturing method of lightweight materials with replaceable mechanical properties. Therefore, research on the molding and processing technology of aluminum, which is a lightweight material, is being actively conducted. In this study, aluminum material was applied. By using Autoform S/W, a press forming analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. In this study, aluminum material was applied. By using Autoform S/W, a press molding analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. The optimized results were confirmed by comparative analysis of formability and Spring Back. As a result of the experiment, it was possible to confirm the result value of the Spring Back of the final product according to the tensile change of the material.

단조기어 정밀도 향상을 위한 연구 (A Study to improve dimensional accuracy of forged gear)

  • 이영선;정택우;이정환;조종래;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF

자동차 내부 보강판 성형 금형 설계 (Design of Stamping Die for Inner Reinforcement Panel of Automotive)

  • 안동규;송동한;노경보;한길영
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.60-68
    • /
    • 2009
  • The objective of this paper is to design stamping die of inner reinforcement panel with DL 950 advanced high strength steel as stamping materials through numerical analyses and experiments. The stamping process was designed as bending dominant process consisting of 1 step of notching and 4 steps of bending processes. In order to obtain a proper design of the stamping die, various three-dimensional elasto-plastic finite element analyses were performed using a commercial code AUTOFORM V4.2. Design parameter of stamping die was chosen as the corner radius of the stamping die for each step. From the results of the FE analysis, feasible corner radii of the stamping die, which can minimize the deviation of corner angle of the stamped part from design data, and forming load for each part were estimated. Stamping experiments were carried out using the manufactured stamping die according to the proposed die design. The results of experiments were shown that the stamping die can successfully manufacture the inner reinforcement panel with DL 950 advanced high strength steel as base stamping material.

  • PDF

Development of the Practical and Adaptive Die of Piloting Stripper Type for Sheet Metal (part 1)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok;Park, Hae-Kyoung
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.109-113
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working with a pilot punch guide is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production part's press working by piloting for accurate guide of actual sheet metal strip. Part 1 of this study reveals with production part and strip process layout for the die design.

  • PDF

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF