• Title/Summary/Keyword: die-back

Search Result 167, Processing Time 0.023 seconds

The Study of Manufacturing Technology for a Sill Side by Roll Forming (다단 성형 기술을 이용한 차체 부품 개발)

  • Kim, D.K.;Han, S.W.;Jeon, H.J.;Cheon, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

Design and implementation of the SliM image processor chip (SliM 이미지 프로세서 칩 설계 및 구현)

  • 옹수환;선우명훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.186-194
    • /
    • 1996
  • The SliM (sliding memory plane) array processor has been proposed to alleviate disadvantages of existing mesh-connected SIMD(single instruction stream- multiple data streams) array processors, such as the inter-PE(processing element) communication overhead, the data I/O overhead and complicated interconnections. This paper presents the deisgn and implementation of SliM image processor ASIC (application specific integrated circuit) chip consisting of mesh connected 5 X 5 PE. The PE architecture implemented here is quite different from the originally proposed PE. We have performed the front-end design, such as VHDL (VHSIC hardware description language)modeling, logic synthesis and simulation, and have doen the back-end design procedure. The SliM ASIC chip used the VTI 0.8$\mu$m standard cell library (v8r4.4) has 55,255 gates and twenty-five 128 X 9 bit SRAM modules. The chip has the 326.71 X 313.24mil$^{2}$ die size and is packed using the 144 pin MQFP. The chip operates perfectly at 25 MHz and gives 625 MIPS. For performance evaluation, we developed parallel algorithms and the performance results showed improvement compared with existing image processors.

  • PDF

Effect of Temperature on Growth of new Shoot in Panax ginseng under Dark (인삼근 신아의 암하생육에 미치는 영향)

  • Park, Hoon;Yoo, Ki-Joong;Lee, Jong-Ryool
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 1982
  • New shoot growth of Panax ginseng root was investigated comparing with burley and soybean from l0$^{\circ}C$ to 30$^{\circ}C$ under dark. Shoot growth ceased by 12days at 30$^{\circ}C$ and optimum temperature appeared to be 15$^{\circ}C$/20$^{\circ}C$ (15hrs/9 hrs) , and 15$^{\circ}C$/15$^{\circ}C$ for ginseng. Shoot growth seems to be Poor below l0$^{\circ}C$. Temperature for maximum growth 20$^{\circ}C$/20$^{\circ}C$ for barley and 20$^{\circ}C$ /25$^{\circ}C$ for soybean. Barley did not germinate above 25$^{\circ}C$/25$^{\circ}C$, but grow better than soybean below 15$^{\circ}C$/25$^{\circ}C$. Fresh weight of 2 weeks suggesting cessation of water uptake at higher temporal use. Ginseng showed greater root ply s shoot of ginseng was linearly increased at 15$^{\circ}C$ but did not increased at 25$^{\circ}C$ after occurence of die-back of new shoot or root rot above 25$^{\circ}C$.

  • PDF

Isotropy Control of 7075 Al Wrought Alloy by Thixoextrusion (반용융 압출에 의한 A7075 합금의 등방성 제어)

  • Yoon, Young-Ok;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.210-216
    • /
    • 2010
  • The aim of this study is to characterize a thixoextruded 7075 Al wrought alloy bar in terms of its isotropic behavior through the optical microscope, mechanical test and electron back scattered diffraction. It is also discussed of the extrudability improvement for 7075 Al wrought alloy by thixoextrusion, with emphasis on controlling thixoextrusion parameters. Hot extrusion shows that the maximum extrusion pressure depends on their characteristics in terms of flow stress and hot workability. In the contrary, thixoextrusion demonstrates that the maximum extrusion pressure is almost uniform regardless of the experimental parameters, such as initial ram speed, die bearing length and thixoextrusion temperature. The hot extruded microstructures become elongated to extrusion direction, while the thixoextruded microstructures are isotropic and homogeneously distributed due to the existence of liquid phase between solid grains during the process. The grain refinement due to dynamic recrystallization during thixoextrusion has been also occurred. Subsequent recrystallization would lead to the strengthening of mechanical properties, as observed in the study. The important point is that the values of tensile, yield strength and elongation of the thixoextruded bar without plastic deformation are similar to those of the hot extruded bar with severe plastic deformation.

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Soilborne Diseases of Mulberry and their Management

  • Sharma, D.D.;Naik, V.Nishitha;Chowdary, N.B.;Mala, V.R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.93-106
    • /
    • 2003
  • Soilborne diseases pose a serious problem for mulberry cultivation during nursery plantation and established gardens, which cause severe loss in revenue generation of mulberry growers as compared to foliar diseases. Various soilborne diseases affect mulberry. Among them, root knot and root rot affect the established plantation resulting in severe loss in leaf yield apart from deterioration in leaf quality, which is a pre-requisite in successful sericulture to get the good quality of cocoons. Besides, stem-canker, cutting rot, collar rot and die-back, affect the initial establishment and survivability of mulberry plantation in nursery. The problem is difficult to handle, due to the complex nature of the diseases and also involvement of various biotic and abiotic factors. This is compounded by the occurrence of disease complex (especially nematode + soilborne pathogenic microbes) in established mulberry gardens, which facilitates quick spread of the disease and enhance the plant mortality, resulting substantial loss in leaf yield. Therefore, prevention and timely control measures need to be taken up to protect the mulberry plants from different soilborne plant pathogens. In this review article, symptomatology, epidemiology, disease cycle and control measures of soilborne diseases of mulberry are discussed.

A Numerical Analysis for Plastic Deformation of a Ti Alloy and a study for Shear Band Analysis (Ti 합금 형단조에서의 소성 해석 및 전단 밴드 분석)

  • 윤수진;손영일;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • This study summarizes the numerical analyses of a Ti alloy deformation under a back extrusion process. Amongst metallic parts in a small propulsion motor case, a Ti-6Al-4V alloy is used extensively. However, the Ti alloy shows a great deal of shear band formation which often leads to a fracture due to a narrow working temperature window. Moreover, the shear band tends to develop over an area where a contact occurs between the hot work piece and the die wall, due to localized cooling. Thus, heating the dies is often required to overcome the deformation localization. Therefore, it becomes necessary to investigate the internal temperature and strain rate distribution during forging process of a Ti alloy. Furthermore, a shear band analysis is peformed using a finite difference scheme and a comparison is made between steel and Ti alloy.

  • PDF

A High Efficiency Controller IC for LLC Resonant Converter in 0.35 μm BCD

  • Hong, Seong-Wha;Kim, Hong-Jin;Park, Hyung-Gu;Park, Joon-Sung;Pu, Young-Gun;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.271-278
    • /
    • 2011
  • This paper presents a LLC resonant controller IC for secondary side control without external active devices to achieve low profile and low cost LED back light units. A gate driving transformer is adopted to isolate the primary side and the secondary side instead of an opto-coupler. A new integrated dimming circuitry is proposed to improve the dynamic current control characteristic and the current density of a LED for the brightness modulation of a large screen LCD. A dual-slope clock generator is proposed to overcome the frequency error due to the under shoot in conventional approaches. This chip is fabricated using 0.35 ${\mu}m$ BCD technology and the die size is $2{\times}2\;mm^2$. The frequency range of the clock generator is from 50 kHz to 500 kHz and the range of the dead time is from 50 ns to 2.2 ${\mu}s$. The efficiency of the LED driving circuit is 97 % and the current consumption is 40 mA for a 100 kHz operation frequency from a 15 V supply voltage.

Die Leibniz' $bin\ddot{a}re$ Arithmetik und das I-Ching' Symbolik der Hexagramme vom Standpunkt der modernen Logik

  • Bae, Sun-Bok
    • Korean Journal of Logic
    • /
    • v.5 no.1
    • /
    • pp.147-157
    • /
    • 2001
  • In this study I try to show some numerical analogy between Leibniz's binary system anc I-ching's symbolic system of duo rerum principia, imagines quator, octo figurae am 64 hexagrams. But, there is really a formal logical accordance in their symbolic foundations, on which are based especially the Wittgenstein's 16 truth-tables in his Tractatus-logico-philosophicus(5.101) am 16 hexagrams, as long as we interpret with the binary values 0 am 1, i.e. the Bi-Polarity, the logical tradition from J. Boole, G. Frege through B. Russell and AN. Whitehead to R. Wittgenstein. So, I argue that the historical and theoretical root of that tradition goes back to the debate between Bouvet and Leibniz about the mathematical structure of I-ching' symbols and the Leibnizian binary arithmetic. In the letter on 4. 11. 1701 from Peking to Leibniz, Bouvet wrote that the I-Ching's symbolism has an analogous structure with Leibniz's binary arithmetic. Corresponding to his suggestion, but without exact knowledge, in the letter of 2. January 1967 to the duke August in Braunschweig-Lueneburg-Wolfenbuettel had Leibniz shown already an original idea for the creation of the world with imago Dei which comes from binary progression, dark and light on water.

  • PDF

A study on the minimization of deformation by milling of plate-shaped parts (판형 부품의 밀링 가공에 의한 변형 최소화에 대한 연구)

  • Lee, Min-Gu;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2021
  • Plate-shaped works are one of the materials that can be applied to the entire industry due to their various shapes and sizes. Plate-shaped parts workpieces are thin and wide, and when processing is completed, they are often bent or deformed in various directions, making it difficult to produce normal products. In particular, this study intends to study the processing deformation and distortion of plate-shaped parts fastened to the jig during milling processing. In this study, a method for preventing deformation occurring in plate-shaped parts was derived through jig element change and CAE analysis, and this was applied to actual processing to produce products with stable dimensions. Through a finite element analysis experiment, it was found that installing two supports on the back of the plate-shaped part results in minimal deformation and the optimal distance between the two supports is 150 mm. Through this experiment, when processing a thin plate product, a support was installed in a direction opposite to the cutting force applied to the thin plate to prevent deformation of the product, thereby improving defects.