• Title/Summary/Keyword: die design

Search Result 1,578, Processing Time 0.022 seconds

TiN Surface-Alloying of Ti-6Al-4V Alloy by CO2 Laser (CO2 레이저에 의한 Ti-6Al-4V 합금(合金)의 TiN 표면합금화(表面合金化))

  • Park, S.D.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ti-6Al-4V alloy are widely used in chemical and aircraft industries for their good corrosion resistance and high strength to weight ratio. Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN surface-alloyed layer with high hardness on the substrate very simplely by injecting reaction gas($N_2$) into a laser-generated melt pool and adjust the hardness to the specific requirements of the individual application by changing of laser processing parameters. This research has been investigated the effect of such parameters on TiN surface-alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum hardness of TiN surface-alloyed zone waw obtained by injecting 100% $N_2$ gas and it was decreased as the amount of $N_2$ gas in Ar and $N_2$ gas mixture was decreased. As scanning speed was increased, the hardness and depth of TiN surface-alloyed zone was decreased at constant laser power. The surface hardness after double scanning laser treatment is higher than that of single scanning. At constant laser power, the surface roughness is increased after the surface alloying if laser scanning speed is decreased.

  • PDF

Test Standard for Reliability of Automotive Semiconductors: AEC-Q100 (자동차 반도체의 신뢰성 테스트 표준: AEC-Q100)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.578-583
    • /
    • 2021
  • This paper describes acceleration tests for reliability of semiconductors. It also describes AEC-Q100, international test standard for reliability of automotive semiconductors. Semiconductors can be used for dozens of years. So acceleration tests are essential to test potential problems over whole period of product where test time is minimized by applying intensive stresses. AEC-Q100 is a typical acceleration test in automotive semiconductors, and it is designed to find various failures in semiconductors and to analyze their causes of occurance. So it finds many problems in design and fabrication as well as it predicts lifetime and reliability of semiconductors. AEC-Q100 consists of 7 test groups such as accelerated environmental stress tests, accelerated lifetime simulation tests, package assembly integrity tests, die fabrication reliability tests, electrical verification tests, defect screening tests, and cavity package integrity tests. It has 4 grades from grade 0 to grade 3 based on operational temperature. AEC-Q101, Q102, Q103, Q104, and Q200 are applied to discrete semiconductors, optoelectronic semiconductors, sensors, multichip modules, and passive components, respectively.

A Method for Generation of Grinding Map based on Automatic Mold Measurement (금형 자동측정에 의한 사상맵 생성)

  • Jeoung, Nam-Yeoung;Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • Ensuring the quality of molds is one of the major issues in mass production. In general, securing the quality of the molds is achieved by repeating grinding and die spotting after machining the molds based on engineer's decision. However, this heuristic method is affected by the engineer's skill and working environment. Therefore, a lot of time and resources are needed in order to ensure quality. In this study, ensuring the quality of molds using grinding map which is generated using automatic measurement is proposed. An automatic measuring system based on CMM (Coordinate Measuring Machine) is developed for measuring the molds. This system generates the measurement path automatically using the 3D CAD model of products. CAD (ComputerAided-Design), CAM (Computer-Aided-Manufacturing), and CAQ (Computer-Aided-Quality) technology is integrated using DMIS (Dimensional Measuring Interface Standard) format in the automatic measuring system. After measuring the molds, a grinding map is generated using the gap between the CAD model and measured values of mold. The grinding map displays the machining tendency and the required amount of grinding with values on a 3D map. Therefore, the quality of molds can be ensured with exactness and quickness based on the grinding map. This study shows that integrating the planning, measuring, and analyzing based on computer technology can solve the problem of quality assurance of mold using the proposed method, therefore the productivity can be increased.

Preparedness of food industry in korea for united states food and drug administration food safety modernization act (미국 식품의약품안전청 식품안전 현대화법에 대한 국내 식품산업의 대처 방안)

  • Kim, Jang Ho;Eun, Jong-Bang
    • Food Science and Industry
    • /
    • v.49 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • Even though the food safety system in the United States is one of the best in the world, many millions of people become sick and thousands die from foodborne illnesses caused by any of a number of microbial pathogens and other contaminants. Large recalls of United States Department of Agriculture (USDA) and the Food Drug and Administration (US FDA)-regulated food products due to findings of E. coli O157:H7, Listeria, Salmonella, and other problems occur each year. As the US FDA Food Safety Modernization Act (FSMA) passed in 2011, FSMA will require food processing, manufacturing, shipping, and other regulated entities to conduct an analysis of the most likely safety hazards and to design and implement risk-based controls to reduce or eliminate these hazards. FSMA also mandates increased scrutiny of food imports, which account for a growing share of U.S. food consumption; food import shipments will have to be accompanied by documentation showing that they can meet safety standards that are at least equivalent to those in the U.S. On September 17, 2015, the US FDA published final rules for Preventive Controls for Human and Animal Food and, continuing into 2016, the US FDA intends to finalize the remaining five rules it has proposed to implement FSMA. Among these rules, this article will review and discuss Preventive Controls for Human Food Rule and its components, and suggest how to comply with these FSMA rules as foreign human food and ingredients suppliers to the US.

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts (언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Cho, Hoon;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.

A study on the analysis of heat flow in X-ray tube (X-ray tube 내 열유동 해석에 관한 연구)

  • Yun, Dong-Min;Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.26-31
    • /
    • 2021
  • As the aging ages, the disease also increases, and the development of AI technology and X-ray equipment used to treat patients' diseases is also progressing a lot. X-ray tube converts only 1% of electron energy into X-ray and 99% into thermal energy. Therefore, when the cooling time of the anode and the X-ray tube are frequently used in large hospitals, the amount of X-ray emission increases due to temperature rise, the image quality deteriorates due to the difference in X-ray dose, and the lifespan of the overheated X-ray tube may be shortened. Therefore, in this study, temperature rise and cooling time of 60kW, 75kW, and 90kW of X-ray tube anode input power were studied. In the X-ray Tube One shot 0.1s, the section where the temperature rises fastest is 0.03s from 0s, and it is judged that the temperature has risen by more than 50%. The section in which the temperature drop changes most rapidly at 20 seconds of cooling time for the X-ray tube is 0.1 seconds to 0.2 seconds, and it is judged that a high temperature drop of about 65% or more has occurred. After 20 seconds of cooling time from 0 seconds to 0.1 seconds of the X-ray tube, the temperature is expected to rise by more than 3.7% from the beginning. In particular, since 90kW can be damaged by thermal shock at high temperatures, it is necessary to increase the surface area of the anode or to require an efficient cooling system.

A study on the comparison of the predicting performance of quality of injection molded product according to the structure of artificial neural network (인공신경망 구조에 따른 사출 성형폼 품질의 예측성능 차이에 대한 비교 연구)

  • Yang, Dong-Cheol;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 2021
  • The quality of products produced by injection molding process is greatly influenced by the process variables set on the injection molding machine during manufacturing. It is very difficult to predict the quality of injection molded product considering the stochastic nature of manufacturing process, because the process variables complexly affect the quality of the injection molded product. In the present study we predicted the quality of injection molded product using Artificial Neural Network (ANN) method specifically from Multiple Input Single Output (MISO) and Multiple Input Multiple Output (MIMO) perspectives. In order to train the ANN model a systematic plan was prepared based on a combination of orthogonal sampling and random sampling methods to represent various and robust patterns with small number of experiments. According to the plan the injection molding experiments were conducted to generate data that was separated into training, validation and test data groups to optimize the parameters of the ANN model and evaluate predicting performance of 4 structures (MISO1-2, MIMO1-2). Based on the predicting performance test, it was confirmed that as the number of output variables were decreased, the predicting performance was improved. The results indicated that it is effective to use single output model when we need to predict the quality of injection molded product with high accuracy.

Industrial analysis according to lithography characteristics of digital micromirror device and polygon scanner (Digital Micromirror Device와 Polygon scanner의 Lithography 특성에 따른 산업적 분석)

  • Kim, Ji-Hun;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.65-71
    • /
    • 2021
  • In the early days of laser invention, it was simply used as a measuring tool, but as lasers became more common, they became an indispensable processing tool in the industry. Short-wavelength lasers are used to make patterns on wafers used in semiconductors depending on the wavelength, such as CO2 laser, YAG laser, green laser, and UV laser. At first, the hole of the PCB board mainly used for electronic parts was not thin and the hole size was large, so a mechanical drill was used. However, in order to realize product miniaturization and high integration, small hole processing lasers have become essential, and pattern exposure for small hole sizes has become essential. This paper intends to analyze the characteristics through patterns by exposing the PCB substrate through DMD and polygon scanner, which are different optical systems. Since the optical systems are different, the size of the patterns was made the same, and exposure was performed under the optimal conditions for each system. Pattern characteristics were analyzed through a 3D profiler. As a result of the analysis, there was no significant difference in line width between the two systems. However, it was confirmed that dmd had better pattern precision and polygon scanner had better productivity.